Answer:
B
Step-by-step explanation:
f(x) = 3(x + 5) + 4/x
To find f(a + 2) , put a + 2 in place of every x
f(a + 2) = 3 (a + 2 + 5) + 4/(a + 2)
f(a + 2) = 3 (a + 7) + 4/(a + 2)
Answer:
Diverges
Step-by-step explanation:
Hope i helped:)
Answer:
X=8
Step-by-step explanation:
3x+ 6 = 5x -10
6+10=5X-3X
16=2X
X=8
The region r is enclosed by the curves y₁ = 4 - 4x² and y₂ = 0 is 16/3 or 5.333 square units.
<h3>What is an area bounded by the curve?</h3>
When the two curves intersect then they bound the region is known as the area bounded by the curve.
The region r is enclosed by the curves y₁ = 4 - 4x² and y₂ = 0
The intersection points will be
y₁ = y₂
4 - 4x² = 0
x = ±1
Then the area bounded by the curves will be
![\rm Area = \int _{-1}^1 (y_1- y_2) dx\\\\Area = \int _{-1}^1 (4 - 4x^2) dx\\\\Area = \left [ 4x - \dfrac{4x^3}{3} \right ]_{-1}^1\\\\Area = 4 \left ( 1 + 1 \right ) - \dfrac{4}{3} \left ( 1^3 - (-1)^3 \right )\\\\Area = 8 - \dfrac{8}{3}\\\\Area = \dfrac{16}{3} = 5.333 \](https://tex.z-dn.net/?f=%5Crm%20Area%20%3D%20%5Cint%20_%7B-1%7D%5E1%20%28y_1-%20%20y_2%29%20dx%5C%5C%5C%5CArea%20%3D%20%5Cint%20_%7B-1%7D%5E1%20%284%20-%204x%5E2%29%20dx%5C%5C%5C%5CArea%20%3D%20%5Cleft%20%5B%204x%20%20-%20%5Cdfrac%7B4x%5E3%7D%7B3%7D%20%5Cright%20%5D_%7B-1%7D%5E1%5C%5C%5C%5CArea%20%3D%204%20%5Cleft%20%28%201%20%2B%201%20%5Cright%20%29%20-%20%5Cdfrac%7B4%7D%7B3%7D%20%5Cleft%20%28%201%5E3%20-%20%28-1%29%5E3%20%5Cright%20%29%5C%5C%5C%5CArea%20%3D%208%20-%20%5Cdfrac%7B8%7D%7B3%7D%5C%5C%5C%5CArea%20%3D%20%5Cdfrac%7B16%7D%7B3%7D%20%3D%205.333%20%5C)
More about the area bounded by the curve link is given below.
brainly.com/question/24563834
#SPJ4
Answer:
The change in temperature per minute for the sample, dT/dt is 71.
°C/min
Step-by-step explanation:
The given parameters of the question are;
The specific heat capacity for glass, dQ/dT = 0.18 (kcal/°C)
The heat transfer rate for 1 kg of glass at 20.0 °C, dQ/dt = 12.9 kcal/min
Given that both dQ/dT and dQ/dt are known, we have;


Therefore, we get;


For the sample, we have the change in temperature per minute, dT/dt, presented as follows;
