We want to find the combined volume of 3 tennis balls. We will get that the combined volume is 493.7 cm^3
First, remember that for a sphere of diameter D, the volume is:

Where 3.14 is pi.
Here we know that the average diameter of a tennis ball is 6.8cm, then we can replace that in the above equation to find the volume (in average) of a single tennis ball:

Now, in 3 balls of tennis, the combined volume will be 3 times the above one, this is:

If you want to learn more about volumes, you can read:
brainly.com/question/10171109
Answer:
x = 50 N
Explanation:
Given that we have a net force, a mass, and acceleration, we can use the fundamental formula for force found in newton's second law which is F = m × a.
Given a mass of 150 kg, and an acceleration 3.0m/s². We can substitute these two values in our formula to calculate the magnitude of these forces or it's net force to identify the unknown force acting on our known force for this situation to work.
_______
F (Net force) = F2 (Second force which we are given) - F1 (First force) = m × a
m (mass which we are given) = 150 kg
a (acceleration which we are given) = 3.0m/s
________
So F = m × a → F2 - F1 = m × a →
500 - F1 = 150 × 3.0 → 500 - F1 = 450 →
-F1 = -50 → F1 = 50
It is called the CMBR, which stands for cosmic microwave background radiation. It was discovered by Arno Penzias and Robert Wilson in 1964.
Answer:


Explanation:
The period of the comet is the time it takes to do a complete orbit:
T=1951-(-563)=2514 years
writen in seconds:

Since the eccentricity is greater than 0 but lower than 1 you can know that the trajectory is an ellipse.
Therefore, if the mass of the sun is aprox. 1.99e30 kg, and you assume it to be much larger than the mass of the comet, you can use Kepler's law of periods to calculate the semimajor axis:
![T^2=\frac{4\pi^2}{Gm_{sun}}a^3\\ a=\sqrt[3]{\frac{Gm_{sun}T^2}{4\pi^2} } \\a=1.50*10^{6}m](https://tex.z-dn.net/?f=T%5E2%3D%5Cfrac%7B4%5Cpi%5E2%7D%7BGm_%7Bsun%7D%7Da%5E3%5C%5C%20a%3D%5Csqrt%5B3%5D%7B%5Cfrac%7BGm_%7Bsun%7DT%5E2%7D%7B4%5Cpi%5E2%7D%20%7D%20%5C%5Ca%3D1.50%2A10%5E%7B6%7Dm)
Then, using the law of orbits, you can calculate the greatest distance from the sun, which is called aphelion:
