D. The total number of valence electrons is 8 and D represents that. D also correctly uses the octet rule for N and duet rule for H.
<u>Answer:</u> The amount of energy released per gram of
is -71.92 kJ
<u>Explanation:</u>
For the given chemical reaction:

The equation used to calculate enthalpy change is of a reaction is:
![\Delta H^o_{rxn}=\sum [n\times \Delta H^o_f_{(product)}]-\sum [n\times \Delta H^o_f_{(reactant)}]](https://tex.z-dn.net/?f=%5CDelta%20H%5Eo_%7Brxn%7D%3D%5Csum%20%5Bn%5Ctimes%20%5CDelta%20H%5Eo_f_%7B%28product%29%7D%5D-%5Csum%20%5Bn%5Ctimes%20%5CDelta%20H%5Eo_f_%7B%28reactant%29%7D%5D)
The equation for the enthalpy change of the above reaction is:
![\Delta H^o_{rxn}=[(5\times \Delta H^o_f_{(B_2O_3(s))})+(9\times \Delta H^o_f_{(H_2O(l))})]-[(2\times \Delta H^o_f_{(B_5H_9(l))})+(12\times \Delta H^o_f_{(O_2(g))})]](https://tex.z-dn.net/?f=%5CDelta%20H%5Eo_%7Brxn%7D%3D%5B%285%5Ctimes%20%5CDelta%20H%5Eo_f_%7B%28B_2O_3%28s%29%29%7D%29%2B%289%5Ctimes%20%5CDelta%20H%5Eo_f_%7B%28H_2O%28l%29%29%7D%29%5D-%5B%282%5Ctimes%20%5CDelta%20H%5Eo_f_%7B%28B_5H_9%28l%29%29%7D%29%2B%2812%5Ctimes%20%5CDelta%20H%5Eo_f_%7B%28O_2%28g%29%29%7D%29%5D)
Taking the standard enthalpy of formation:

Putting values in above equation, we get:
![\Delta H^o_{rxn}=[(5\times (1271.94))+(9\times (-285.83))]-[(2\times (73.2))+(12\times (0))]\\\\\Delta H^o_{rxn}=-9078.57kJ](https://tex.z-dn.net/?f=%5CDelta%20H%5Eo_%7Brxn%7D%3D%5B%285%5Ctimes%20%281271.94%29%29%2B%289%5Ctimes%20%28-285.83%29%29%5D-%5B%282%5Ctimes%20%2873.2%29%29%2B%2812%5Ctimes%20%280%29%29%5D%5C%5C%5C%5C%5CDelta%20H%5Eo_%7Brxn%7D%3D-9078.57kJ)
We know that:
Molar mass of pentaborane -9 = 63.12 g/mol
By Stoichiometry of the reaction:
If 2 moles of
produces -9078.57 kJ of energy.
Or,
If
of
produces -9078.57 kJ of energy
Then, 1 gram of
will produce =
of energy.
Hence, the amount of energy released per gram of
is -71.92 kJ
Answer:
-2
Explanation:
carbonate oxifation number is -2
Answer:
d. 60.8 L
Explanation:
Step 1: Given data
- Heat absorbed (Q): 53.1 J
- External pressure (P): 0.677 atm
- Final volume (V2): 63.2 L
- Change in the internal energy (ΔU): -108.3 J
Step 2: Calculate the work (W) done by the system
We will use the following expression.
ΔU = Q + W
W = ΔU - Q
W = -108.3 J - 53.1 J = -161.4 J
Step 3: Convert W to atm.L
We will use the conversion factor 1 atm.L = 101.325 J.
-161.4 J × 1 atm.L/101.325 J = -1.593 atm.L
Step 4: Calculate the initial volume
First, we will use the following expression.
W = - P × ΔV
ΔV = - W / P
ΔV = - 1.593 atm.L / 0.677 atm = 2.35 L
The initial volume is:
V2 = V1 + ΔV
V1 = V2 - ΔV
V1 = 63.2 L - 2.35 L = 60.8 L
I am pretty sure the answer is 6.25 molecules
See picture for explanation