Makaylah: 7371 / 250
Keisha: 4731
/ 250
Kelviona: 8871
/250
Janell: 2217
/125
(i dont know the divison part)
Slope for the function is -1/3.5.
1) 2/4 = 1/4 + 1/4
2) 4/6 = 1/6 + 1/6 + 1/6 + 1/6
3) 3/5 = 1/5 + 1/5 + 1/5
4) 3/3 = 1/3 + 1/3 + 1/3
5) 7/8 = 1/8 + 1/8 + 1/8 + 1/8 + 1/8 + 1/8 + 1/8
6) 6/2 = 1/2 + 1/2 + 1/2 + 1/2 + 1/2 + 1/2
7) 5/6 = 1/6 + 1/6 + 1/6 + 1/6 + 1/6
8) 9/5 = 1/5 + 1/5 + 1/5 + 1/5 + 1/5 + 1/5 + 1/5 + 1/5 + 1/5
9) 8/3 = 1/3 + 1/3 + 1/3 + 1/3 + 1/3 + 1/3 + 1/3 + 1/3
10) 1/2 * 8 = 8/2 = 4
11) Unit fractions are fractions where its numerators are 1 and its denominators are positive integer. example: 1/2 ; 1/3 ; 1/4
12) D.) 5/2 = 5 * 1/2
Answer:
A right triangle is always 90 degrees.
Step-by-step explanation:
Part A:
Given

defined by


but

Since, f(xy) ≠ f(x)f(y)
Therefore, the function is not a homomorphism.
Part B:
Given

defined by

Note that in

, -1 = 1 and f(0) = 0 and f(1) = -1 = 1, so we can also use the formular


and

Therefore, the function is a homomorphism.
Part C:
Given

, defined by


Since, f(x+y) ≠ f(x) + f(y), therefore, the function is not a homomorphism.
Part D:
Given

, defined by


but

Since, h(ab) ≠ h(a)h(b), therefore, the funtion is not a homomorphism.
Part E:
Given

, defined by
![\left([x_{12}]\right)=[x_4]](https://tex.z-dn.net/?f=%5Cleft%28%5Bx_%7B12%7D%5D%5Cright%29%3D%5Bx_4%5D)
, where
![[u_n]](https://tex.z-dn.net/?f=%5Bu_n%5D)
denotes the lass of the integer

in

.
Then, for any
![[a_{12}],[b_{12}]\in Z_{12}](https://tex.z-dn.net/?f=%5Ba_%7B12%7D%5D%2C%5Bb_%7B12%7D%5D%5Cin%20Z_%7B12%7D)
, we have
![f\left([a_{12}]+[b_{12}]\right)=f\left([a+b]_{12}\right) \\ \\ =[a+b]_4=[a]_4+[b]_4=f\left([a]_{12}\right)+f\left([b]_{12}\right)](https://tex.z-dn.net/?f=f%5Cleft%28%5Ba_%7B12%7D%5D%2B%5Bb_%7B12%7D%5D%5Cright%29%3Df%5Cleft%28%5Ba%2Bb%5D_%7B12%7D%5Cright%29%20%5C%5C%20%20%5C%5C%20%3D%5Ba%2Bb%5D_4%3D%5Ba%5D_4%2B%5Bb%5D_4%3Df%5Cleft%28%5Ba%5D_%7B12%7D%5Cright%29%2Bf%5Cleft%28%5Bb%5D_%7B12%7D%5Cright%29)
and
![f\left([a_{12}][b_{12}]\right)=f\left([ab]_{12}\right) \\ \\ =[ab]_4=[a]_4[b]_4=f\left([a]_{12}\right)f\left([b]_{12}\right)](https://tex.z-dn.net/?f=f%5Cleft%28%5Ba_%7B12%7D%5D%5Bb_%7B12%7D%5D%5Cright%29%3Df%5Cleft%28%5Bab%5D_%7B12%7D%5Cright%29%20%5C%5C%20%5C%5C%20%3D%5Bab%5D_4%3D%5Ba%5D_4%5Bb%5D_4%3Df%5Cleft%28%5Ba%5D_%7B12%7D%5Cright%29f%5Cleft%28%5Bb%5D_%7B12%7D%5Cright%29)
Therefore, the function is a homomorphism.