Answer:
Mass of the pull is 77 kg
Explanation:
Here we have for
Since the rope moves along with pulley, we have
For the first block we have
T₁ - m₁g = -m₁a = -m₁g/4
T₁ = 3/4(m₁g) = 323.4 N
Similarly, as the acceleration of the second block is the same as the first block but in opposite direction, we have
T₂ - m₂g = m₂a = m₂g/4
T₂ = 5/4(m₂g) = 134.75 N
T₂r - T₁r = I·∝ = 0.5·M·r²(-α/r)
∴ 

Mass of the pull = 77 kg.
By pollution rotting the air and making is worse for us to breath
D, when a moving car suddenly stops, your body is still moving forward until the seatbelt stops you.
When things move, there is always friction. It's what makes cars move in the first place. The inside of the car doesn't move, however the wheels on the car are moving at a rapid pace. When the car stops violently, everything inside the car is thrown. The seat belt acts as a safety precaution if an accident happens.
Mark brainliest?