Answer:
Distance will decrease and work will decrease:
F = m a Newton's Second Law
a = F / m decreasing force will decrease acceleration
S = 1/2 a t^2 = 1/2 (F / m) t^2 distance traveled will decrease as force decreases
W = F * S work will decrease as both force and distance decrease
D. The molecules in water are constantly moving.
They are able to do this because they move around to take whatever shape of the container.
speed = 86km/hr
= 86000/3600
= 23.889m/s
time = 4.6s
acceleration = 23.889/4.6
a = 5.19m/s^2
You do this one just like the other one that I just solved for you.
For this one ...
The density of the object is 2.5 gm/cm³.
We know that every cm³ of it we have contains 2.5 gm of mass.
We have to find out how many cm³ we have.
The question tells us: We have 2.0 cm³.
Each cm³ of space that the object occupies contains 2.5 gm of mass.
So the 2.0 cm³ that we have contains (2 x 2.5 gm) = 5 gms.
That's the mass of our object.
The electrical symbols are very important especially when fixing electrical appliances because it tells you where the wire of neutral and live go.