1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Umnica [9.8K]
3 years ago
5

How fast would you have to jump off the ground in order to jump at least 10 meters in the air?

Physics
1 answer:
ivanzaharov [21]3 years ago
3 0

Answer:

30.5

Explanation:

because you will basically have to be like flash

You might be interested in
What equations would you use to find force?
Klio2033 [76]

Answer:

F = m x a

Explanation:

F = force

m = mass of an object

a = acceleration

6 0
3 years ago
Consider what will happen when a bar magnet is pushed toward the coil. when the coil "feels" the changing magnetic field caused
notka56 [123]
The question just basically explained what happens
4 0
3 years ago
50200 J of heat are removed from
Dmitry_Shevchenko [17]

Correct Answer:

3.1375

Explanation:

Use equation Q=mcΔT to find m

Plug in all variables -50200=x\cdot 2000\cdot -8

Answer: 3.1375

4 0
3 years ago
Two objects carry initial charges that are q1 and q2, respectively, where |q2| > |q1|. They are located 0.160 m apart and beh
mart [117]

Answer:

\rm |q_1|=8.0\times 10^{-7}\ C,\ \ \ |q_2| = 4.6\times 10^{-6}\ C.

Explanation:

According to the Coulomb's law, the magnitude of the electrostatic force between two static point charges  \rm q_1 and \rm q_1, separated by a distance \rm r, is given by

\rm F = \dfrac{kq_1q_2}{r^2}.

where k is the Coulomb's constant.

Initially,

\rm r = 0.160\ m\\F_i = -1.30\ N.\\\\and \ \ |q_2|>|q_1|.

The negative sign is taken with force F because the force is attractive.

Therefore, the initial electrostatic force between the charges is given by

\rm F_i = \dfrac{kq_1q_2}{r^2}.\\-1.30=\dfrac{kq_1q_2}{0.160^2}\\\rm\Rightarrow q_2 = \dfrac{-1.30\times 0.160^2}{q_1k}\ \ \ ..............\ (1).

Now, the objects are then brought into contact, so the net charge is shared equally, and then they are returned to their initial positions.

The force is now repulsive, therefore, \rm F_f = +1.30\ N.

The new charges on the two objects are

\rm q_1'=q_2' = \dfrac{q_1+q_2}{2}.

The new force is given by

\rm F_f = \dfrac{kq_1'q_2'}{r^2}\\+1.30=\dfrac{k\left (\dfrac{q_1+q_2}{2}\right )\left (\dfrac{q_1+q_2}{2}\right )}{0.160^2}\\\Rightarrow \left (\dfrac{q_1+q_2}{2}\right )^2=\dfrac{+1.30\times 0.160^2}{k}\\(q_1+q_2)^2=\dfrac{4\times 1.30\times 0.160^2}{k}\\q_1^2+q_2^2+2q_1q_2=\dfrac{4\times 1.30\times 0.160^2}{k}\\\\

Using (1),

\rm q_1^2+\left ( \dfrac{-1.30\times 0.160^2}{q_1k}\right )^2+2\left (\dfrac{-1.30\times 0.160^2}{k} \right )=\dfrac{4\times 1.30\times 0.160^2}{k}\\q_1^2+\dfrac 1{q_1^2}\left ( \dfrac{-1.30\times 0.160^2}{k}\right )^2-\left (\dfrac{6\times 1.30\times 0.160^2}{k} \right )=0\\q_1^4+\left ( \dfrac{-1.30\times 0.160^2}{k}\right )^2-q_1^2\left (\dfrac{6\times 1.30\times 0.160^2}{k} \right )=0

\rm q_1^4+\left ( \dfrac{-1.30\times 0.160^2}{k}\right )^2-q_1^2\left (\dfrac{6\times 1.30\times 0.160^2}{k} \right )=0\\q_1^4+\left ( \dfrac{-1.30\times 0.160^2}{9\times 10^9}\right )^2-q_1^2\left (\dfrac{6\times 1.30\times 0.160^2}{9\times 10^9} \right )=0\\q_1^4-q_1^2\left (\dfrac{6\times 1.30\times 0.160^2}{9\times 10^9} \right )+\left ( \dfrac{-1.30\times 0.160^2}{9\times 10^9}\right )^2=0

\rm q_1^4-q_1^2\left (2.22\times 10^{-11} \right )+\left ( 1.37\times 10^{-23}\right ) =0\\\Rightarrow q_1^2 = \dfrac{-(-2.22\times 10^{-11})\pm \sqrt{(-2.22\times 10^{-11})^2-4\cdot (1)\cdot (1.37\times 10^{-23})}}{2}\\=1.11\times 10^{-11}\pm 1.046\times 10^{-11}.\\=6.4\times 10^{-13}\ \ \ or\ \ \ 2.156\times 10^{-11}\\\Rightarrow q_1 = \pm 8.00\times 10^{-7}\ C\ \ \ or\ \ \ \pm 4.64\times 10^{-6}\ C.

Using (1),

When \rm q_1 = \pm 8.00\times 10^{-7}\ C,

\rm q_2=\dfrac{-1.30\times 0.160^2}{\pm 8.00\times 10^{-7}\times 9\times 10^9}=\mp4.6\times 10^{-6}\ C.

When \rm q_1=\pm 4.6\times 10^{-6}\ C,

\rm q_2=\dfrac{-1.30\times 0.160^2}{\pm 4.64\times 10^{-6}\times 9\times 10^9}=\mp7.97\times 10^{-7}\ C\approx 8.0\times 10^{-7}\ C.

Since, \rm |q_2|>|q_1|

Therefore, \rm |q_1|=8.0\times 10^{-7}\ C,\ \ \ |q_2| = 4.6\times 10^{-6}\ C.

7 0
2 years ago
A 54 kg man holding a 0.65 kg ball stands on a frozen pond next to a wall. He throws the ball at the wall with a speed of 12.1 m
Inessa [10]

Answer:

The velocity of the man is 0.144 m/s

Explanation:

This is a case of conservation of momentum.

The momentum of the moving ball before it was caught must equal the momentum of the man and the ball after he catches the ball.

Mass of ball = 0.65 kg

Mass of the man = 54 kg

Velocity of the ball = 12.1 m/s

Before collision, momentum of the ball = mass x velocity

= 0.65 x 12.1 = 7.865 kg-m/s

After collision the momentum of the man and ball system is

(0.65 + 54)Vf = 54.65Vf

Where Vf is their final common velocity.

Equating the initial and final momentum,

7.865 = 54.65Vf

Vf = 7.865/54.65 = 0.144 m/s

4 0
2 years ago
Other questions:
  • For this problem, imagine that you are on a ship that is oscillating up and down on a rough sea. Assume for simplicity that this
    11·1 answer
  • Help me with 5 daily life situations to find the resultant force.
    5·1 answer
  • If someone travels 3000 feet in one second, how far will it travel in 18 minutes
    11·2 answers
  • PLS HELP ASAP
    9·1 answer
  • A small but bright light is at the bottom of a pool 2.2 m  deep. How wide is the circle of light that exits the surface of the
    14·1 answer
  • The name of C (S) + o2 (g) CO2 (g)
    13·1 answer
  • Please I need help ill give u 50 points
    14·1 answer
  • 1) Manipulate is to measure as
    5·1 answer
  • When a narrow laser beam passes through a fine wire mesh before arriving at the wall, it forms a complicated pattern of bright s
    7·1 answer
  • Modern observations have shown that the geometry of the universe is ____.
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!