Longitudinal waves transfer energy parallel to the direction of the wave motion
Answer:
a baseball flying through the air at 90 miles per hour
Explanation:
For the question, Therefore, the kinetic energy of an object is proportional to the square of its velocity (speed). In other words, If the velocity is doubled the kinetic energy will increase by a factor of four.
Answer:
1069.38 gallons
Explanation:
Let V₀ = 1.07 × 10³ be the initial volume of the gasoline at temperature θ₁ = 52 °F. Let V₁ be the volume at θ₂ = 97 °F.
V₁ = V₀(1 + βΔθ) β = coefficient of volume expansion for gasoline = 9.6 × 10⁻⁴ °C⁻¹
Δθ = (5/9)(97°F -52°F) °C = 25 °C.
Let V₂ be its final volume when it cools to 52°F in the tank is
V₂ = V₁(1 - βΔθ) = V₀(1 + βΔθ)(1 - βΔθ) = V₀(1 - [βΔθ]²)
= 1.07 × 10³(1 - [9.6 × 10⁻⁴ °C⁻¹ × 25 °C]²)
= 1.07 × 10³(1 - [0.024]²)
= 1.07 × 10³(1 - 0.000576)
= 1.07 × 10³(0.999424)
= 1069.38 gallons
Answer:
The kinetic energy is 1200 J
Explanation:
The Principle of Conservation of energy states that "energy is neither created nor destroyed, it is transformed".
This means that energy can be transformed from one form to another, but the total amount of energy always remains constant, that is, the total energy is the same before and after each transformation.
The mechanical energy of a body or a physical system is the sum of its kinetic energy and the potential energy. According to the Principle of Conservation of Energy for mechanical energy, the total mechanical energy that a body possesses is constant at every instant of time.
Since mechanical energy is equal to the sum of kinetic energy and gravitational potential energy that a body possesses, the only way to stay constant is that:
- when the kinetic energy increases the gravitational potential energy decreases,
- when gravitational potential energy increases, kinetic energy decreases.
Due to the Principle of Conservation of Energy you can say that the gravitational potential energy is converted to kinetic energy. So Gravitational potential energy at the top = kinetic energy at the bottom
<u><em>The kinetic energy is 1200 J</em></u>
Answer:
The right solution will be the "2v".
Explanation:
For something like an object underneath pure rolling the speed at any point is calculated by:
⇒ 
Although the angular velocity was indeed closely linked to either the transnational velocity throughout particular instance of pure rolling as:
⇒ 
Significant meaning is obtained, as speeds are in the same direction. Therefore the speed of rotation becomes supplied by:
⇒ 
On substituting the estimated values, we get
⇒ 
⇒ 
So that the velocity will be:
⇒ 
⇒ 