Answer:
1) Basilar membrane
2) Stereocilia or hair cells
3) Nerve cells
4) Auditory
5) Temporal lobe
Explanation:
Basilar membrane: located inside of the cochlea which is located in the inner ear. This membrane separates two tubes that is filled with liquid which is also important for hearing.
Hair cells: Connected to the basilar membrane and they acts as sensory receptors which can catch movements (ripples) in the basilar membrane and pass this message to the neurons.
Nerve cells: One of the main cell types in the brain, which are responsible for signal transfer.
Auditory cortex: This part of the brain is located in temporal lobe and handles the auditory information.
Answer:
Adaptation.
Explanation:
Adaptation occurs when the acid tolerance of several plant species has increased significantly in the polluted area. The main reason for this tolerance is the change in the genetic makeup or mutation occurs in the cell due to the exposure of DNA to the chemicals of the environment that cause pollution. The plant adopt the environment by producing certain chemicals that cancel the effects of pollutants and as a result, the plant survive.
Answer: to start what cycle
Explanation:
Answer:
C. An organism must copy its DNA to pass genetic information to its offspring
Explanation:
Without the copying of the DNA life would not continue as existing organisms would not be able to reproduce and replace themselves.
Answer:
Some forms of chromatin modification can be passed on to future generation of cells
Acetylation of histone tails in chromatin allows access to DNA for transcription
DNA is not transcribed when packaged tightly in a condensed form
methylation of histone tails can promote condensation of the chromatin
Explanation:
chromatin modifications that can be passed on includes epigenetic modifications that are heritable changes made to the chromatin structure that does not involve the DNA sequences. Some epigenetic modifications include DNA methylation and Histone modifications. examples of histone modification include acetylation, methylation, phosphorylation, ubiquintylation etc. All these function either in allowing the DNA become more accessible to transcritional factors or vice versa. for exmple, histone tail acetylation encourages unwounding of nucleosomes allowing transcriptional factors to have access to the DNa while histone tails methylation further tightens the nucleosomes promoting condensation of the chromatin.