Answer:
As the ball falls from C to E, potential energy is converted to kinetic energy. The velocity of the ball increases as it falls, which means that the ball attains its greatest velocity, and thus its greatest kinetic energy
Explanation:
<em>A</em> - <em>B</em> = (10<em>i</em> - 2<em>j</em> - 4<em>k</em>) - (<em>i</em> + 7<em>j</em> - <em>k</em>)
<em>A</em> - <em>B</em> = 9<em>i</em> - 9<em>j</em> - 3<em>k</em>
|<em>A</em> - <em>B</em>| = √(9² + (-9)² + (-3)²) = √189 = 3√19
Answer:
Hydraulic pressure exerted on glass slab, ρ=10 atm
Bulk modulus of glass, B=37×10^9 Nm^−2
Bulk modulus, B=P/(ΔV/V)
where,
ΔV/V= Fractional change in volume
ΔV/V=P/B
=10×1.013×10^5 /(37×10 ^9)
=2.73×10^-5
Therefore, the fractional change in the volume of the glass slab is 2.73×10^-5
Hope it helps
Answer:

Explanation:
There are two spheres name 1 and 2 and they posses the same charge, which is +q.
And they have equal mass which is 2.098 g.
The distance between these two spheres is,
.
And the acceleration of each sphere is,
.
Now the coulumbian force experience by 1 sphere due to 2 sphere,
.
And also the newton force will occur due to this force,
.
Now equate the above two values of force will get,

Further solve this,
.
Substitute all the known variables in above equation,
.
.