Answer: 4nmeter
Explanation: The two observer a and b will measure the same wavelength since the speed of the space craft is very small compared with the speed of light c. That is
V which is the speed of space craft 15000km/s = 15000000m/s
Comparing this with the speed of light c 3*EXP(8)m/s we have
15000000/300000000
= 0.05=0.1
Therefore the speed of the space craft V in terms of the speed of light c is 0.1c special relativity does not apply to object moving at such speed. So the wavelength would not be contracted it will remain same for both observers.
To solve this problem, we must remember about the law of
conservation of momentum. The initial momentum mist be equal to the final
momentum, that is:
m1 v1 + m2 v2 = (m1 + m2) v’
where v’ is the speed of impact
Since we are not given the masses of each car m1 and m2,
so let us assume that they are equal, such that:
m1 = m2 = m
Which makes the equation:
m v1 + m v2 = (2 m) v’
Cancelling m and substituting the v values:
50 + 48 = 2 v’
2 v’ = 98
v ‘ = 49 km/h
<span>The speed of impact is 49 km/h.</span>
Answer:
C) 40 N/m
Explanation:
If we ASSUME that the spring is un-stretched at the zero cm position
k = F/Δx = 10/0.25 = 40 N/m
Answer:
The temperature of air in the tire is 55.57 ºC
Explanation:
Please look at the solution in the attached Word file