1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
storchak [24]
3 years ago
12

A catapult launches a test rocket vertically upward from a well, giving the rocket an initial speed of 80.6 m/s at ground level.

The engines then fire, and the rocket accelerates upward at 3.90 m/s2 until it reaches an altitude of 1150 m. At that point its engines fail, and the rocket goes into free fall, with an acceleration of ?9.80 m/s2. (You will need to consider the motion while the engine is operating and the free-fall motion separately.)
(a) For what time interval is the rocket in motion above the ground?
(b) What is its maximum altitude?
(c) What is its velocity just before it hits the ground?
Physics
1 answer:
kow [346]3 years ago
3 0

Before the engines fail, the rocket's altitude at time <em>t</em> is given by

y_1(t)=\left(80.6\dfrac{\rm m}{\rm s}\right)t+\dfrac12\left(3.90\dfrac{\rm m}{\mathrm s^2}\right)t^2

and its velocity is

v_1(t)=80.6\dfrac{\rm m}{\rm s}+\left(3.90\dfrac{\rm m}{\mathrm s^2}\right)t

The rocket then reaches an altitude of 1150 m at time <em>t</em> such that

1150\,\mathrm m=\left(80.6\dfrac{\rm m}{\rm s}\right)t+\dfrac12\left(3.90\dfrac{\rm m}{\mathrm s^2}\right)t^2

Solve for <em>t</em> to find this time to be

t=11.2\,\mathrm s

At this time, the rocket attains a velocity of

v_1(11.2\,\mathrm s)=124\dfrac{\rm m}{\rm s}

When it's in freefall, the rocket's altitude is given by

y_2(t)=1150\,\mathrm m+\left(124\dfrac{\rm m}{\rm s}\right)t-\dfrac g2t^2

where g=9.80\frac{\rm m}{\mathrm s^2} is the acceleration due to gravity, and its velocity is

v_2(t)=124\dfrac{\rm m}{\rm s}-gt

(a) After the first 11.2 s of flight, the rocket is in the air for as long as it takes for y_2(t) to reach 0:

1150\,\mathrm m+\left(124\dfrac{\rm m}{\rm s}\right)t-\dfrac g2t^2=0\implies t=32.6\,\mathrm s

So the rocket is in motion for a total of 11.2 s + 32.6 s = 43.4 s.

(b) Recall that

{v_f}^2-{v_i}^2=2a\Delta y

where v_f and v_i denote final and initial velocities, respecitively, a denotes acceleration, and \Delta y the difference in altitudes over some time interval. At its maximum height, the rocket has zero velocity. After the engines fail, the rocket will keep moving upward for a little while before it starts to fall to the ground, which means y_2 will contain the information we need to find the maximum height.

-\left(124\dfrac{\rm m}{\rm s}\right)^2=-2g(y_{\rm max}-1150\,\mathrm m)

Solve for y_{\rm max} and we find that the rocket reaches a maximum altitude of about 1930 m.

(c) In part (a), we found the time it takes for the rocket to hit the ground (relative to y_2(t)) to be about 32.6 s. Plug this into v_2(t) to find the velocity before it crashes:

v_2(32.6\,\mathrm s)=-196\frac{\rm m}{\rm s}

That is, the rocket has a velocity of 196 m/s in the downward direction as it hits the ground.

You might be interested in
To demonstrate the tremendous acceleration of a top fuel dragracer, you attempt to run your car into the back of a dragster that
noname [10]

Answer:

a. 2v₀/a   b. 2v₀/a  

Explanation:

a. Since you are moving with a constant velocity v₀, the distance, s you cover in time = t max is s = v₀t.

Since the dragster starts from rest with an acceleration, a, using

s' = ut + 1/2at² where u = 0 and s' = distance moved by dragster

s' = 0t + 1/2at²

s' = 1/2at²

Since the distance moved by me and the dragster must be the same,

s = s'

v₀t. =  1/2at²

v₀t. - 1/2at² = 0

t(v₀ - 1/2at) = 0

t= 0 or v₀ - 1/2at = 0

t= 0 or v₀ = 1/2at

t= 0 or t = 2v₀/a  

So the maximum time tmax = 2v₀/a

b. Since the distance covered by me to meet the dragster is s = v₀t in time, t = tmax which is also my distance from the dragster when it started. So, my distance from the dragster when it started is s =  v₀(2v₀/a)

= 2v₀/a  

4 0
3 years ago
How far can a sound wave travel in 90 seconds when the ambient air temperature is 10 C?
Ksju [112]

Answer:

s = 30330.7 m = 30.33 km

Explanation:

First we need to calculate the speed of sound at the given temperature. For this purpose we use the following formula:

v = v₀√[T/273 k]

where,

v = speed of sound at given temperature = ?

v₀ = speed of sound at 0°C = 331 m/s

T = Given Temperature = 10°C + 273 = 283 k

Therefore,

v = (331 m/s)√[283 k/273 k]

v = 337 m/s

Now, we use the following formula to calculate the distance traveled  by sound:

s = vt

where,

s = distance traveled = ?

t = time taken = 90 s

Therefore,

s = (337 m/s)(90 s)

<u>s = 30330.7 m = 30.33 km</u>

6 0
3 years ago
1) A train accelerates from 36 km/hr to 54 km/hr in 10<br> s. Find acceleration?
Crank

Answer: Given:

Initial velocity= 36km/h=36x5/18=10m/s

Final velocity =54km/h=54x5/18=15m/s

Time =10sec

Acceleration = v-u/ t

=15-10/10=5/10=1/2=0.5 m/s2

Distance =s=?

From second equation of motion:

S=ut +1/2 at^2

=10*10+1/2*0.5*10*10

=100+25

=125m

So distance travelled 125m

Hope it helps you

3 0
3 years ago
In an insulated vessel, a quantity of hot water at temperature T1 is mixed with a different quantity of cold water at temperatur
erastovalidia [21]

Answer:Water Only

Explanation:

Given

vessel is insulated therefore no heat can be added or removed i.e. heat exchange is zero

If hot water at T_1 is mixed with cold water at T_2 then at equilibrium vessel contains only water and final temperature of water will be between T_1 and T_2

Heat released by hot water is equal to heat gain by cold water .

4 0
3 years ago
In an internal combustion engine, heat flow into a gas causes it to <br> .
Sunny_sXe [5.5K]

Answer:

Along path BC of the Otto cycle, heat transfer Qh into the gas occurs at constant volume, causing a further increase in pressure and temperature. This process corresponds to burning fuel in an internal combustion engine, and takes place so rapidly that the volume is nearly constant.

7 0
2 years ago
Other questions:
  • If my final exam is worth 30% and my class average is 80, what do I need to get to pass the exam?
    10·1 answer
  • While painting the top of an antenna 275 m in height, a worker accidentally lets a 1.00 L water bottle fall from his lunchbox. T
    8·1 answer
  • The Nichrome wire is replaced by a wire of the same length and diameter, and same mobile electron density but with electron mobi
    7·2 answers
  • A 12.0-g plastic ball is dropped from a height of 2.50 m. Just as it strikes the floor, it is moving at a speed of 3.20 m/s. How
    7·1 answer
  • Calculate the volume of a 5-g sample of pure gold
    12·1 answer
  • 4. Increasing the mass of this freight train will
    12·1 answer
  • Which one is the right andwerrrrrrrr
    8·1 answer
  • What is the station 2 code for cupids spread the love escape room?
    10·1 answer
  • Atoms can join together to form ______ substance​
    10·1 answer
  • Which of the following units would need to be converted before being used for a calculation
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!