1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
storchak [24]
3 years ago
12

A catapult launches a test rocket vertically upward from a well, giving the rocket an initial speed of 80.6 m/s at ground level.

The engines then fire, and the rocket accelerates upward at 3.90 m/s2 until it reaches an altitude of 1150 m. At that point its engines fail, and the rocket goes into free fall, with an acceleration of ?9.80 m/s2. (You will need to consider the motion while the engine is operating and the free-fall motion separately.)
(a) For what time interval is the rocket in motion above the ground?
(b) What is its maximum altitude?
(c) What is its velocity just before it hits the ground?
Physics
1 answer:
kow [346]3 years ago
3 0

Before the engines fail, the rocket's altitude at time <em>t</em> is given by

y_1(t)=\left(80.6\dfrac{\rm m}{\rm s}\right)t+\dfrac12\left(3.90\dfrac{\rm m}{\mathrm s^2}\right)t^2

and its velocity is

v_1(t)=80.6\dfrac{\rm m}{\rm s}+\left(3.90\dfrac{\rm m}{\mathrm s^2}\right)t

The rocket then reaches an altitude of 1150 m at time <em>t</em> such that

1150\,\mathrm m=\left(80.6\dfrac{\rm m}{\rm s}\right)t+\dfrac12\left(3.90\dfrac{\rm m}{\mathrm s^2}\right)t^2

Solve for <em>t</em> to find this time to be

t=11.2\,\mathrm s

At this time, the rocket attains a velocity of

v_1(11.2\,\mathrm s)=124\dfrac{\rm m}{\rm s}

When it's in freefall, the rocket's altitude is given by

y_2(t)=1150\,\mathrm m+\left(124\dfrac{\rm m}{\rm s}\right)t-\dfrac g2t^2

where g=9.80\frac{\rm m}{\mathrm s^2} is the acceleration due to gravity, and its velocity is

v_2(t)=124\dfrac{\rm m}{\rm s}-gt

(a) After the first 11.2 s of flight, the rocket is in the air for as long as it takes for y_2(t) to reach 0:

1150\,\mathrm m+\left(124\dfrac{\rm m}{\rm s}\right)t-\dfrac g2t^2=0\implies t=32.6\,\mathrm s

So the rocket is in motion for a total of 11.2 s + 32.6 s = 43.4 s.

(b) Recall that

{v_f}^2-{v_i}^2=2a\Delta y

where v_f and v_i denote final and initial velocities, respecitively, a denotes acceleration, and \Delta y the difference in altitudes over some time interval. At its maximum height, the rocket has zero velocity. After the engines fail, the rocket will keep moving upward for a little while before it starts to fall to the ground, which means y_2 will contain the information we need to find the maximum height.

-\left(124\dfrac{\rm m}{\rm s}\right)^2=-2g(y_{\rm max}-1150\,\mathrm m)

Solve for y_{\rm max} and we find that the rocket reaches a maximum altitude of about 1930 m.

(c) In part (a), we found the time it takes for the rocket to hit the ground (relative to y_2(t)) to be about 32.6 s. Plug this into v_2(t) to find the velocity before it crashes:

v_2(32.6\,\mathrm s)=-196\frac{\rm m}{\rm s}

That is, the rocket has a velocity of 196 m/s in the downward direction as it hits the ground.

You might be interested in
Light propagate faster through medium “a” than medium “b”
dangina [55]

1) Medium "b" has more optical density

2) Light must hit the interface between the two mediums perpendicularly

Explanation:

1)

Refraction occurs when light propagates from a medium into a second medium.

The optical density of a medium is given by its index of refraction, which is defined as:

n=\frac{c}{v}

where

c is the speed of light in a vacuum

v is the speed of light in a medium

Higher index of refraction means higher optical density, and light propagater slower into a medium with higher optical density.

In this problem, light propagates faster through medium "a" than medium "b": this means that medium "a" has lower refractive index of medium "b", and so "b" has more optical density.

2)

We can answer this part by referring to Snell's law, which gives the relationship between the direction of the incident ray and of the refracted ray when light passes through the interface between two media:

n_1 sin \theta_1 = n_2 sin \theta_2

where

n_1, n_2 are the index of refraction of the two mediums

\theta_1, \theta_2 are the angle of incidence and of refraction (the angle that light makes with the normal to the surface in medium 1 and medium 2)

Here we want the direction of propagation of the light ray not to change: this means that it must be

sin \theta_1 = sin \theta_2 (1)

However, here we have two mediums "a" and "b" with different index of refraction, so

n_1\neq n_2

Therefore the only angle that can satisfy eq.(1) is

\theta_1 = \theta_2 = 0

So, the light must hit the surface perpendicular to the interface between the two mediums.

Learn more about refraction:

brainly.com/question/3183125

brainly.com/question/12370040

#LearnwithBrainly

3 0
3 years ago
Are you country or are you city?
Mariulka [41]

Answer:

Neither lma0 I'm from a town :P

Explanation:

Hbu?

Have a nice dayyy <3

6 0
3 years ago
Read 2 more answers
When an object is balanced about a pivot, the total clockwise moment must be equal to the total __________ __________. What two
Keith_Richards [23]

Answer:

When an object is balanced, about a pivot, the total clockwise moment must be equal to the total anticlockwise moment about that pivot.

Hope that helps.

5 0
3 years ago
Can somebody help me with this I need to pass
son4ous [18]
<h2>Answer:Radiation-3,Conduction-1,Convection-2</h2>

Explanation:

Radiation is the transfer of heat through electromagnetic waves.

These waves do not require any medium.This is the way we get heat from sun.Radiation is the quickest mode to transfer of heat.

Conduction is the transfer of heat through collisions of atomic particles.

This phenomenon largely occurs in solids like metals.The neighbour atoms sets the atoms into random motion thereby raising the temperature.

Convection is the transfer of heat through actual movement of medium particle.

This phenomenon occurs in gases an liquids.The medium particles actually traverse through the space transferring the heat.

5 0
3 years ago
Atmosphere in a sealed space craft contains
Alekssandra [29.7K]
The best and most correct answer among the choices provided by your question is the fourth choice or letter D.

<span>Atmosphere in a sealed space craft contains </span><span>pressurized atmospheric air available normally on earth.</span>

I hope my answer has come to your help. Thank you for posting your question here in Brainly. We hope to answer more of your questions and inquiries soon. Have a nice day ahead!
8 0
3 years ago
Other questions:
  • A wheel moves in the xy plane in such a way that the location of its center is given by the equations xo = 12t3 and yo = R = 2,
    6·1 answer
  • A surface encloses the charges q1 = 3.2 μC , q2 = 6.7 μC , and q3 = -3.8 μC. Find the electric flux through this surface.
    10·1 answer
  • A block spring system oscillates on a frictionless surface with an amplitude of 10\text{ cm}10 cm and has an energy of 2.5 \text
    5·1 answer
  • Which of the following is not an example of Newton’s third law?
    10·1 answer
  • A car’s bumper is designed to withstand a 4.0-km/h (1.1-m/s) collision with an immovable object without damage to the body of th
    6·1 answer
  • **URGENT, I WILL PAY 30 POINTS, PLEASE HELP**
    14·2 answers
  • Three pucks A, B, and C are shown sliding across ice at the noted speeds. Air and ice friction forces
    7·1 answer
  • A metal block suspended from a spring balance is submerged in water. You observe that the block displaces 55 cm3 of water and th
    7·1 answer
  • T/F: Stars die.<br> True<br> False
    9·1 answer
  • Aye yo help me out plz
    5·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!