Answer:
7m/s^2
Explanation:
using v=u+at
since the car started from rest, u=0 , v=14m/s t=2s
a =acceleration.
14=0+a×2
14=0+2a
14=2a
a= 14/2 =7
a=7m/s^2
Answer:
<em><u>A binary star is a star system consisting of two stars orbiting around their common barycenter. </u></em>
<h3><em><u>❣️</u></em><em><u>(◍</u></em><em><u>J</u></em><em><u>e</u></em><em><u>s</u></em><em><u>s</u></em><em><u> </u></em><em><u>bregoli</u></em><em><u>◍)</u></em><em><u>❣️</u></em></h3>
#<em><u>k</u></em><em><u>e</u></em><em><u>ep </u></em><em><u>learning</u></em>
Answer:
The elastic potential energy of the spring change during this process is 21.6 J.
Explanation:
Given that,
Spring constant of the spring, 
It extends 6 cm away from its equilibrium position.
We need to find the elastic potential energy of the spring change during this process. The elastic potential energy of the spring is given by the formula as follows :

So, the elastic potential energy of the spring change during this process is 21.6 J.