1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
stira [4]
3 years ago
10

_____ have a nearly circular orbit.

Physics
1 answer:
bezimeni [28]3 years ago
4 0
B. Asteroids have a nearly circular orbit.
You might be interested in
If the rectangular barge is 3.0 m by 20.0 m and sits 0.70 m deep in the harbor, how deep will it sit in the river?
leva [86]

The harbour contains salt water while the river contains fresh water. So assuming that the densities of fresh water and salt water are:

density (salt water) = 1029 kg / m^3

density (fresh water) = 1000 kg / m^3

The amount of water (in mass) displaced by the barge should be equal in two waters.

mass displaced (salt water) = mass displaced (fresh water)

Since mass is also the product of density and volume, therefore:

<span>[density * volume]_salt water = [density * volume]_fresh water                 ---> 1</span>

 

First we calculate the amount of volume displaced in the harbour (salt water):

V = 3.0 m * 20.0 m * 0.70 m

V = 42 m^3 of salt water

Plugging in the values into equation 1:

1029 kg / m^3 * 42 m^3 = 1000 kg/m^3 * Volume fresh water

Volume fresh water displaced = 43.218 m^3

 

Therefore the depth of the barge in the river is:

43.218 m^3 = 3.0 m * 20.0 m * h

<span>h = 0.72 m        (ANSWER)</span>

8 0
3 years ago
Which best contrasts Newton's and Einstein's ideas?
Len [333]

Answer:

Newton believed that mass tells gravity how much force to exert. Einstein believed that mass tells space-time how to curve.

Explanation:

Isaac Newton believed that bodies on earth had a force of gravity pulling them down as a result of their masses.

Albert Einstein believed that the bodies were not pulled down but were moving around in a circular sphere/manner.

This confirms Newton believing that mass tells gravity how much force to exert and Einstein believing that mass tells space-time how to curve.

6 0
3 years ago
Read 2 more answers
A distant galaxy is determined to be 150 million light years distant and moving away from us; using the Hubble law determine its
dlinn [17]

Your question kind of petered out there towards the end and you didn't specify
the terms, so I'll pick my own.

The "Hubble Constant" hasn't yet been pinned down precisely, so let's pick a
round number that's in the neighborhood of the last 20 years of measurements:

             <em>70 km per second per megaparsec</em>.

We'll also need to know that 1 parsec = about 3.262 light years.

So the speed of your receding galaxy is

         (Distance in LY) x (1 megaparsec / 3,262,000 LY) x (70 km/sec-mpsc) =

              (150 million) x  (1 / 3,262,000) x (70 km/sec) =

                                 <em>3,219 km/sec  </em>in the direction away from us (rounded)

4 0
3 years ago
A cube has a drag coefficient of 0.8. What would be the terminal velocity of a sugar cube 1 cm on a side in air ( = 1.2 kg/mº)?
anzhelika [568]

0.495 m/s

Explanation

the formula for the terminal velocity is given by:

\begin{gathered} v=\sqrt[]{\frac{2mg}{\sigma AC}} \\ \text{where} \\  \end{gathered}

m is the mass

g is 9.81 m/s²

ρ is density

A is area

C is the drag coefficient

then

Step 1

Let's find the mass

\begin{gathered} \sigma=\frac{m}{v} \\ m=\sigma\cdot v \\ \text{mass}=(2\cdot10^3\frac{\operatorname{kg}}{m^3})\cdot(0.01m)^3 \\ \text{mass}=(2\cdot10^3\frac{\operatorname{kg}}{m^3})\cdot(1\cdot10^{-6}) \\ \text{mass}=2\cdot10^{-3}\operatorname{kg} \\ \text{mass}=0.002\text{ kg } \\ \text{Area}=(0.01\text{ m}\cdot0.01m)=0.0001m^2 \end{gathered}

now, replace

\begin{gathered} v=\sqrt[]{\frac{2mg}{\sigma AC}} \\ v=\sqrt[]{\frac{2(0.002kg)(9.81\text{ }\frac{m}{s^2})}{(2\cdot10^3\frac{\operatorname{kg}}{m^3})(0.0001m^2)0.8}} \\ v=\sqrt[]{\frac{0.03924\frac{\operatorname{kg}m}{s^2}}{0.16\frac{\operatorname{kg}}{m^{}}}} \\ v=\sqrt[]{0.2452\frac{m^2}{s^2}} \\ v=0.495\text{ m/s} \end{gathered}

hence, the answer is 0.495 m/s

3 0
1 year ago
What is the formula for calculating mechanical power​
Oksi-84 [34.3K]

Answer:

Because work can be defined as force time distance, we can also use the following equation

Solution

P=power (w or ft-lbf/s)

F=force (N or lbf)

D=distance (m or ft)

T=time (sec)

One horsepower is equivalent to 550 ft-lbf/s and 745.7 watts.

6 0
3 years ago
Other questions:
  • You should always wear your seat belt just in case the car comes to an abrupt stop. The seat belt will hold you in place so that
    11·2 answers
  • According to Einsteins explanation, what causes gravitation?
    13·1 answer
  • Class II levers like ankles and wheelbarrows are useful because they provide mechanical advantage, by amplifying the input force
    14·1 answer
  • Which sentence in the passage can be used to conclude that Eris is a dwarf planet and not a planet?
    15·2 answers
  • The femur is a bone in the leg whose minimum cross-sectional area is about 3.70 10-4 m2. A compressional force in excess of 6.60
    10·1 answer
  • A 2200 kg SUV traveling at 23.9 m/s can be stopped in 0.16 s if it hits a concrete wall. Assume that a 60 kg person was in the c
    5·1 answer
  • A block of mass 2 kg slides down ramp 1 with a height of 3 m. It then slides for 1 m on a surface with a kinetic coefficient of
    13·1 answer
  • a hammer of mass 5 kg travelling at 4 metre per second is a nail directly and does not rebound what is the impulse of the hammer
    9·1 answer
  • Average velocity is different than average speed because calculating average velocity involves
    9·1 answer
  • n Fig. 30.11, R = 15.0 Ω and the battery emf is 6.30 V. With switch S2 open, switch S1 is closed. After several minutes, S1 is o
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!