Answer: a) Theory
Explanation: “Dalton’s Atomic Theory”
b) When iron rusts in a container... is an Observation
c) The “Law”of Conservation of Mass
d) is an observation
Answer:
, inside the plane
Explanation:
We need to calculate the magnitude and direction of the magnetic field produced by each wire first, using the formula

where
is the vacuum permeability
I is the current
r is the distance from the wire
For the top wire,
I = 4.00 A
r = d/2 = 0.105 m (since we are evaluating the field half-way between the two wires)
so

And using the right-hand rule (thumb in the same direction as the current (to the right), other fingers wrapped around the thumb indicating the direction of the magnetic field lines), we find that the direction of the field lines at point P is inside the plane
For the bottom wire,
I = 5.90 A
r = 0.105 m
so

And using the right-hand rule (thumb in the same direction as the current (to the left), other fingers wrapped around the thumb indicating the direction of the magnetic field lines), we find that the direction of the field lines at point P is also inside the plane
So both field add together at point P, and the magnitude of the resultant field is:

And the direction is inside the plane.
Answer:
○ 0 
Explanation:
Even if the athelete runs four laps of a 400 m track, its displacement will be 0 because the displacement is the shortest distance from its to final position. And, here the final and initial position is same since he comes to its initial position after covering certain distance. So, displacement is 0.
Answer:
Assume that
;
.
Density of the disk: approximately
.
Weight of the disk: approximately
.
Buoyant force on the disk if it is submerged under water: approximately
.
The disk will sink when placed in water.
Explanation:
Convert the dimensions of this disk to SI units:
- Diameter:
. - Thickness
.
The radius of a circle is 1/2 its diameter:
.
Volume of this disk:
.
Density of this disk:
.
indicates that the disk will sink when placed in water.
Weight of the object:
.
The buoyant force on an object in water is equal to the weight of water that this object displaces. When this disk is submerged under water, it will displace approximately
of water. The buoyant force on the disk will be:
.
The size of this disk's weight is greater than the size of the buoyant force on it when submerged under water. As a result, the disk will sink when placed in water.
Answer:
Spiral Galaxy
Explanation:
Spiral galaxies are named by their spiral structures that extend from the center into the galactic disc. The spiral arms are sites of ongoing star formation and are brighter than the surrounding disc because of the young, hot OB stars that inhabit them.