Your answer is 3 ( 1 calcium atom and 2 bromine atoms)
Answer: 6.36
Explanation:
Given
Radius of grindstone, r = 4 m
Initial angular speed of grindstone, w(i) = 8 rad/s
Final angular speed of the grindstone, w(f) = 12 rad/s
Time used, t = 4 s
Angular acceleration of the grinder,
α = Δw / t
α = w(f) - w(i) / t
α = (12 - 8) / 4
α = 4/4 = 1 rad/s²
Number of complete revolution in 4s =
Δθ = w(i).t + 1/2.α.t²
Δθ = 8 * 4 + 1/2 * 1 * 4²
Δθ = 32 + 1/2 * 16
Δθ = 32 + 8
Δθ = 40 rad/s
40 rad/s = 40/2π rpm = 6.36 rpm
Therefore, the grindstone does 6.36 revolutions during the 4 s interval
Answer:
The color orange is named after the fruit
Answer:
The induced emf in the loop is 
Explanation:
Given that,
Length of the wire, L = 1.22 m
It changes its shape is changed from square to circular. Then the side of square be its circumference, 4a = L
4a = 1.22
a = 0.305 m
Area of square, 
Circumference of the loop,

Area of circle,

The induced emf is given by :

So, the induced emf in the loop is 
Here in this case we can use work energy theorem
As per work energy theorem
Work done by all forces = Change in kinetic Energy of the object
Total kinetic energy of the solid sphere is ZERO initially as it is given at rest.
Final total kinetic energy is sum of rotational kinetic energy and translational kinetic energy

also we know that


Now kinetic energy is given by





Now by work energy theorem
Work done = 10500 - 0 = 10500 J
So in the above case work done on sphere is 10500 J