Answer:
1
= -----------
6(x + 7)
Step-by-step explanation:
3x - 21 x^2 - 49
----------- ÷ -------------
18x - 18 x - 1
3x - 21 x - 1
----------- × -------------
18x - 18 x^2 - 49
Factor the top left:
3x - 21 = 3(x - 7)
Factor the bottom left:
18x - 18 = 18(x - 1)
Factor the new bottom right:
x^2 - 49 = (x + 7)(x - 7)
Multiply and simplify the faction:
3(x - 7) x - 1
----------- × -----------------
18(x - 1) (x + 7)(x - 7)
1
= -------------
6(x + 7)
Answer: 5²⁻⁵
<u>Step-by-step explanation:</u>


Answer:
x - 8 = 0
Step-by-step explanation:
Since, the cube root of a number is 2.
Let the number be x.
Therefore,
![\sqrt[3]{x} = 2 \\ cubing \: both \: sides \\ {( \sqrt[3]{x})}^{3} = {(2)}^{3} \\ x = 8 \\ x - 8 = 0](https://tex.z-dn.net/?f=%20%5Csqrt%5B3%5D%7Bx%7D%20%20%3D%202%20%5C%5C%20%20cubing%20%5C%3A%20both%20%5C%3A%20sides%20%5C%5C%20%20%7B%28%20%5Csqrt%5B3%5D%7Bx%7D%29%7D%5E%7B3%7D%20%20%3D%20%20%7B%282%29%7D%5E%7B3%7D%20%20%5C%5C%20%20%20x%20%3D%208%20%5C%5C%20%20x%20-%208%20%3D%200)
X = 7/5 is the answer to your question
I'll assume you're supposed to compute the line integral of
over the given path
. By the fundamental theorem of calculus,

so evaluating the integral is as simple as evaluting
at the endpoints of
. But first we need to determine
given its gradient.
We have

Differentiating with respect to
gives

and we end up with

for some constant
. Then the value of the line integral is
.