One can solve the problem by using the law of conservation of momentum. The total momentum prior to the collision must be equivalent to the total momentum after the collision, so we have:
m1v1 + m2v2 = m1v1 + m2v2
Here, m1 is 0.4 Kg that is the mass of the ball, u1 is 18 m/s that is the initial velocity of the ball, m2 is 0.2 Kg that is the mass of the bottle, and u2 is 0 that is the initial velocity of the bottle.
v1 is the final velocity of the ball, which is to be determined, and v2 is 25 m/s that is the final velocity of the bottle.
Substituting and rearranging the equation, one can find the final velocity of the ball:
v1 = m1u1 - m2v2 / m1 = (0.4 kg) (18 m/s) - (0.2 Kg) (25 m/s) / 0.4 Kg = 5.5 m/s.
This is an amide on the aromatic ring.
A. Tolerance range is different for different organisms.
That is a tetrahedral arrangement, with an angle of 109.5°. Nothing changes in terms of the shape when the hydrogen atoms combine with the carbon, and so the methane molecule is also tetrahedral with 109.5° bond angles.