Answer:
One is 2 0's before the decimal point (100) and the other is 2 decimal places AFTER the decimal point (0.01)
Essentially, the question is asking us how many times do we multiply 0.01 to get 100? This will be how many times greater 100 is compared to 0.01
Lets move the decimal point 4 times to the right:
0.01
00.1
1.0
10.0
100.0
Step-by-step explanation:
Area shaded = Area big circle- Area of small circle;
200 pi= pi•(2x)^2 -pi•6^2;
200pi= pi•4x^2 -pi•36;
200pi=pi•4(x^2 -9) divide both sides by 4pi;
50=x^2 -9; So x=sqrt(59)~7.68cm
Answer:
A) The annual multiplier was 1.0339; the annual increase was 0.0339 of the value.
B) 3.39% per year
C) $182,000
Step-by-step explanation:
A) Let's let t represent years since 1987. Then we can fill in the numbers and solve for r.
165000 = 100000(1 +r)^15
1.65^(1/15) = 1 +r . . . . . divide by 100,000; take the 15th root
1.03394855265 -1 = r ≈ 0.0339
The value was multiplied by about 1.0339 each year.
__
B) The value increased by about 3.39% per year.
__
C) S = $100,000(1.03394855265)^18 ≈ $182,000
Answer:
The x-coordinate of the point changing at ¼cm/s
Step-by-step explanation:
Given
y = √(3 + x³)
Point (1,2)
Increment Rate = dy/dt = 3cm/s
To calculate how fast is the x-coordinate of the point changing at that instant?
First, we calculate dy/dx
if y = √(3 + x³)
dy/dx = 3x²/(2√(3 + x³))
At (x,y) = (1,2)
dy/dx = 3(1)²/(2√(3 + 1³))
dy/dx = 3/2√4
dy/dx = 3/(2*2)
dy/dx = ¾
Then we calculate dx/dt
dx/dt = dy/dt ÷ dy/dx
Where dy/dx = ¾ and dy/dt = 3
dx/dt = ¾ ÷ 3
dx/dt = ¾ * ⅓
dx/dt = ¼cm/s
The x-coordinate of the point changing at ¼cm/s
Answer:
The amount of change he should received is
$100 - $56.875
= $43.125
= $43.13
Step-by-step explanation:
Length of window trim = 32 and 1/2 ft
Cost per foot = $1.75
Amount paid = $100
Total cost of window trim = 32.5×1.75 = $56.875
The amount of change he should received is
$100 - $56.875
= $43.125
= $43.13