2-7-1
<h3>Further explanation
</h3>
Electrons can move the shell up or down by releasing energy or absorbing energy
Excited electrons show higher electron transfer to the shell by absorbing energy
So it can be concluded that there are 2 conditions:
Ground state is the state of electrons filling shell with the lowest energy levels.
Excited state is the state of electrons which occupies a higher energy level
The state of excited electrons can be seen from the presence of electrons which do not fill the skin completely but fill the skin afterward
2-7-1
From its 8 electron configuration, filling 3 shells, 2 electrons in the firs shell, 7 electrons in the second shell and 1 electron in the third shell
the electrons in the third shell should fill the electrons in the second shell first according to Aufbau rule (lower energy shells)

Answer:
35.9 ml
Explanation:
Start with the balanced equation:
3CuCl2(aq)+2Na3PO4(aq)→Cu3(PO4)2(s)+6NaCl(aq)
This tells us that 3 moles of CuCI2 react with 2 moles Na3PO4-
∴ 1 mole CuCl2 will react with 2/3 moles Na3PO4
We know that concentration = moles/volume i.e:
c= n/v
∴n=c×v
∴nCuCl2=0.107×91.01000=9.737×10−3
I divided by 1000 to convert ml to L
∴nNa3PO4=9.737×10−3×23=6.491×10−3
v=nc=6.491×10−30.181=35.86×10−3L
∴v=35.86ml
I think you're talking about Ribosomes?
This is the organelle responsible for protein synthesis.
Answer:
a) Aqueous LiBr = Hydrogen Gas
b) Aqueous AgBr = solid Ag
c) Molten LiBr = solid Li
c) Molten AgBr = Solid Ag
Explanation:
a) Aqueous LiBr
This sample produces Hydrogen gas, because the H+ (conteined in the water) has a reduction potential higher than the Li+ from the salt. Therefore the hydrogen cation will reduce instead of the lithium one and form the gas.
b) Aqueous AgBr
This sample produces Solid Ag, because the Ag+ has a reduction potential higher than the H+ from the water. Therefore the silver cation will reduce instead of the hydrogen one and form the solid.
c) Molten LiBr
In a molten binary salt like LiBr there is only one cation present in the cathod. In this case the Li+, so it will reduce and form solid Li.
c) Molten AgBr
The same as the item above: there is only one cation present in the cathod. In this case the Ag+, so it will reduce and form solid Ag.
1. Equal
2. Properties
3. Heat
4. Reverse