Answer : The concentration of
is, 0.12 M
Explanation :
Using Henry's law :

where,
= concentration of
= ?
= partial pressure of
= 4.5 atm
= Henry's law constant = 
Now put all the given values in the above formula, we get:


Thus, the concentration of
is, 0.12 M
Explanation :
As we know that the Gibbs free energy is not only function of temperature and pressure but also amount of each substance in the system.

where,
is the amount of component 1 and 2 in the system.
Partial molar Gibbs free energy : The partial derivative of Gibbs free energy with respect to amount of component (i) of a mixture when other variable
are kept constant are known as partial molar Gibbs free energy of
component.
For a substance in a mixture, the chemical potential
is defined as the partial molar Gibbs free energy.
The expression will be:

where,
T = temperature
P = pressure
is the amount of component 'i' and 'j' in the system.
Answer:
4.20 moles NF₃
Explanation:
To convert between moles of N₂ and NF₃, you need to use the mole-to-mole ratio from the balanced equation. This ratio consists of the coefficients of both molecules from the balanced equation. The molecule you are converting from (N₂) should be in the denominator of the ratio because this allows for the cancellation of units. The final answer should have 3 sig figs because the given value (2.10 moles) has 3 sig figs.
1 N₂ + 3 F₂ ---> 2 NF₃
2.10 moles N₂ 2 moles NF₃
--------------------- x --------------------- = 4.20 moles NF₃
1 mole N₂
Answer : The atoms in this compound are Copper(Cu), Chlorine(Cl), Hydrogen(H), Oxygen(O).
Explanation :
The given compound is copper chloride bi-hydrate which is also called as copper (II) chloride dihydrate as it contains two water of crystallisation.
The formula of copper chloride bi-hydrate is
.
Therefore, there are 4 atoms in this compound and they are Copper(Cu), Chlorine(Cl), Hydrogen(H) and Oxygen(O).
I believe it is d. physical shape n particle amount (amount of particle increase if u gain weight right?), weight directly proportional to mass..