Answer:
H₂O.
Explanation:
- It is clear from the balanced equation:
<em>CH₄ + 2H₂O → CO₂ + 4H₂.</em>
that 1.0 mole of CH₄ reacts with 2.0 moles of H₂O to produce 1.0 mole of CO₂ and 4.0 moles of H₂.
- To determine the limiting reactant, we should calculate the no. of moles of (20 g) CH₄ and (15 g) H₂O using the relation:
<em>n = mass/molar mass</em>
<em></em>
no. of moles of CH₄ = mass/molar mass = (20 g)/(16 g/mol) = 1.25 mol.
no. of moles of H₂O = mass/molar mass = (15 g)/(18 g/mol) = 0.833 mol.
- <em>from the balanced reaction, 1.0 mole of CH₄ reacts with 2.0 moles of H₂O.</em>
So, from the calculated no. of moles: 0.4167 mole of CH₄ reacts completely with 0.833 mole of H₂O and the remaining of CH₄ will be in excess.
<u><em>So, the limiting reactant is H₂O.</em></u>
Answer : The maximum amount of nickel(II) cyanide is 
Explanation :
The solubility equilibrium reaction will be:

Initial conc. 0.220 0
At eqm. (0.220+s) 2s
The expression for solubility constant for this reaction will be,
![K_{sp}=[Ni^{2+}][CN^-]^2](https://tex.z-dn.net/?f=K_%7Bsp%7D%3D%5BNi%5E%7B2%2B%7D%5D%5BCN%5E-%5D%5E2)
Now put all the given values in this expression, we get:


Therefore, the maximum amount of nickel(II) cyanide is 
Answer:
Yes its both a physical and chemical change heres why.
When heated , the wax melts to form a liquid wax . The liquid wax then becomes a solid wax upon cooling ( Physical change )
When the candle is lit, the wax near the tip of the candle will melt . The wick then absorbs the liquid wax . The liquid wax then vapourizes due to the heat emitting from the flame . The wax vapour then burns to give off a black substance ( what we will to as CO₂ , soot ) , heat and water vapour
(Chemical change )
Brainliest ? Hope I answered your question