Angle 4 equals angle 5, when all angles are equal and the triangles are similar
        
             
        
        
        
Answer:
Step-by-step explanation:
Multiply each term of the first polynomial with   the second polynomial. Then combine the like terms.
(3a<em>² + 5a - 2)* (5a² -3a + 4)</em>
<em> = 3a² *(5a² -3a + 4)  + 5a*(5a² -3a + 4)  - 2*(5a² -3a + 4)</em>
<em>=3a²*5a² - 3a*3a² + 4*3a² +  5a*5a² - 3a*5a  + 4*5a + 5a²*(-2) - 3a*(-2) + 4*(-2)</em>
<em>=15a⁴ - 9a³  + 12a² + 25a³ - 15a² + 20a - 10a² + 6a - 8</em>
<em>= 15a⁴ </em><u><em>- 9a³ + 25a³</em></u><em>   +</em><u><em> 12a² - 15a² - 10a²</em></u><em>   +</em><u><em> 20a +6a </em></u><em>- 8</em>
<em>= 15a⁴ + 16a³  - 13a² +26a  - 8</em>
 
        
             
        
        
        
Since both of the equations equal Y can substitute one for the Y and say that 
X-1=3x+3
-4=2x
-2=x
        
             
        
        
        
1. Write as an algebraic equation:
12 + n ≤ 2n - 8
2. Solve for n.
12 + n - 12 ≤ 2n - 8 - 12
n ≤ 2n - 20
n - 2n ≤ 2n - 20 - 2n
-n ≤ -20
Multiply both sides by -1 (this means you must flip the inequality sign).
n ≥ 20
FINAL ANSWER: n ≥ 20
Hope this helps! Feel free to ask for clarification.