Answer:
tri
Explanation:
1-nothing
2-di
3-tri
- Hope that helps! Please let me know if you need further explanation.
Answer:
108.43 grams KNO₃
Explanation:
To solve this problem we use the formula:
Where
- ΔT is the temperature difference (14.5 K)
- Kf is the cryoscopic constant (1.86 K·m⁻¹)
- b is the molality of the solution (moles KNO₃ per kg of water)
- and<em> i</em> is the van't Hoff factor (2 for KNO₃)
We <u>solve for b</u>:
- 14.5 K = 1.86 K·m⁻¹ * b * 2
Using the given volume of water and its density (aprx. 1 g/mL) we <u>calculate the necessary moles of KNO₃</u>:
- 275 mL water ≅ 275 g water
- moles KNO₃ = molality * kg water = 3.90 * 0.275
- moles KNO₃ = 1.0725 moles KNO₃
Finally we <u>convert KNO₃ moles to grams</u>, using its molecular weight:
- 1.0725 moles KNO₃ * 101.103 g/mol = 108.43 grams KNO₃
In prolonged fasting conditions acetyl-coa generated from the breakdown of amino acids and fatty acids does not enter the citric acid cycle in the liver, but acetyl-coa derived from ketone bodies can enter the citric acid cycle in the brain. <u>Cholesterol is required in the diet.</u>
<h3>What is
amino acids?</h3>
Amino acids are chemical molecules having side chains (R groups) unique to each amino acid as well as amino and carboxylic acid (CO2H) functional groups.
Every amino acid contains the elements carbon (C), hydrogen (H), oxygen (O), and nitrogen (N) (CHON); in addition, the side chains of cysteine and methionine contain sulfur (S), while the less frequent amino acid selenocysteine has selenium (Se). As of 2020, it is known that more than 500 naturally occurring amino acids make up the monomer units of peptides, including proteins.
Despite the fact that there are only 22 proteins, 20 of them have unique specified codons, and another two have unique coding mechanisms: All eukaryotes contain selenocysteine, and pyrrolysine is also present.
To learn more about amino acids from the given link:
brainly.com/question/21327676
#SPJ4
Answer: The possible molecular formula will be 
Explanation:
Mass of C= 27.3 g
Mass of O = 72.7 g
Step 1 : convert given masses into moles.
Moles of C =
Moles of O =
Step 2 : For the mole ratio, divide each value of moles by the smallest number of moles calculated.
For C =
For O =
The ratio of C : O = 1: 2
Hence the empirical formula is
The possible molecular formula will be=