<h3>
Answer:</h3>
0.819 mol Ag
<h3>
General Formulas and Concepts:</h3>
<u>Math</u>
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Chemistry</u>
<u>Atomic Structure</u>
- Avogadro's Number - 6.022 × 10²³ atoms, molecules, formula units, etc.
<u>Stoichiometry</u>
- Using Dimensional Analysis
<h3>
Explanation:</h3>
<u>Step 1: Define</u>
4.93 × 10²³ atoms Ag
<u>Step 2: Identify Conversions</u>
Avogadro's Number
<u>Step 3: Convert</u>
- Set up:
- Divide:
<u>Step 4: Check</u>
<em>Follow sig fig rules and round. We are given 3 sig figs.</em>
0.818665 mol Ag ≈ 0.819 mol Ag
Answer:
The Empirical Formula.
Explanation:
From the empirical formula and using the weight (in g) of a given substance, we can come up with the molecular formula which is the actual weight of a substance. Sometimes, we find that the empircal formula is the molecular formula.
This is an application of Le Chatlier's principle: What happens when we add a reagent to one side of an equation? The reaction will shift to the other side. So heat is a reactant and we're adding more of it, the reaction must therefore, shift to the right ( or the products side).