Concentration can be expressed in different forms: molarity, molality, normality, percentage, part per million and many more. For molality, it is a unit of concentration expressed as moles of solute per kilogram of solvent. Therefore,
0.3 = moles solute/0.10 kg solvent
moles solute = 0.03 moles
Earthquake waves and sound waves are alike because they both cause a spam of vibrations around
Water can exist in three states.
1) Solid State: Called Ice.
2) Liquid State: Called Liquid Water.
3) Gas State: Called Steam.
Remember:
The physical states of a matter depends upon the interactions between the particles of that substance. The interactions are very strong in solid state, strong in liquid state and very weak or negligible in gas state.
If you want to change the state from solid to liquid, or from liquid to gas you will have to provide energy in order to break the interactions between the molecules. Stronger the interactions, the more is energy required to break the interactions.
Water need more energy to convert from liquid to gas phase because hydrogen bond interactions are present among the molecules of water. And the hydrogen bonds are strong enough. Hence in order to break these interactions high energy is required.
Answer: (3)
Medeleev arranged elements in order of increasing atomic weight and similar properties
He noticed that similar elements were grouped together by using this.
Answer:
3.89 kg P2O5 must be used to supply 1.69 kg Phosphorus to the soil.
Explanation:
The molecular mass of P2O5 is
P2 = 2* 31 = 62
O5 = 5 *<u> 16 = 80</u>
Molecular Mass = 142
Set up a Proportion
142 grams P2O5 supplies 62 grams of phosphorus
x kg P2O5 supplies 1.69 kg of phosphorus
Though this might be a bit anti intuitive, you don't have to convert the units for this question. The ratio is all that is important.
142/x = 62/1.69 Cross multiply
142 * 1.69 = 62x combine the left
239.98 = 62x Divide by 62
239.98/62 = x
3.89 kg of P2O5 must be used.