Answer:
The track's angular velocity is W2 = 4.15 in rpm
Explanation:
Momentum angular can be find
I = m*r^2
P = I*W
So to use the conservation
P1 + P2 = 0
I1*W1 + I2*W2 = 0
Solve to w2 to find the angular velocity
0.240kg*0.30m^2*0.79m/s=-1kg*0.30m^2*W2
W2 = 0.435 rad/s
W2 = 4.15 rpm
Answer:
ΔX = λ = 0.68 m
Explanation:
Wave speed is related to wavelength and frequency by the equation
v = λ f
where the speed of sound is 340 m / s
λ = v / f
λ = 340/500
λ = 0.68 m
this is the wavelength, it is the minimum distance for which the wave epitates its movement, which is equal to the distance between two consecutive compressions of the sound
ΔX = λ = 0.68 m
I would say B. Because actual mass would ricochet off the sidewalk.
Explanation:
Kinetic Energy Formula = ½mv²
- ½×800kg×(23m/s)²
- 400kg×529m²/s²
- 211600 kg•m²/s²
- 211700 joule Answer
Answer:
Low Potential energy and High Kinetic energy
Explanation:
Hope this helps and have a good day! Apologies if it's wrong.<3