Note the atom of the Oxygen is electrically neutral, meaning it has equal numbers of electrons and protons.
So if it gains 2 electrons, it would have excess of 2 electrons, hence its charge would be -2.
Option B.
Answer:
v = 5.34[m/s]
Explanation:
In order to solve this problem, we must use the theorem of work and energy conservation. This theorem tells us that the sum of the mechanical energy in the initial state plus the work on or performed by a body must be equal to the mechanical energy in the final state.
Mechanical energy is defined as the sum of energies, kinetic, potential, and elastic.
E₁ = mechanical energy at initial state [J]

In the initial state, we only have kinetic energy, potential energy is not had since the reference point is taken below 1.5[m], and the reference point is taken as potential energy equal to zero.
In the final state, you have kinetic energy and potential since the car has climbed 1.5[m] of the hill. Elastic energy is not available since there are no springs.
E₂ = mechanical energy at final state [J]

Now we can use the first statement to get the first equation:

where:
W₁₋₂ = work from the state 1 to 2.


where:
h = elevation = 1.5 [m]
g = gravity acceleration = 9.81 [m/s²]

![58 = v^{2} +29.43\\v^{2} =28.57\\v=\sqrt{28.57}\\v=5.34[m/s]](https://tex.z-dn.net/?f=58%20%3D%20v%5E%7B2%7D%20%2B29.43%5C%5Cv%5E%7B2%7D%20%3D28.57%5C%5Cv%3D%5Csqrt%7B28.57%7D%5C%5Cv%3D5.34%5Bm%2Fs%5D)
Heat required to raise the temperature of a given system is

here we know that
m = mass
s = specific heat capacity
= change in temperature
now as we know that
mass of wood = 5 kg
mass of aluminium pan = 2 kg
change in temperature = 45 - 20 = 25 degree C
specific heat capacity of wood = 1700 J/kg C
specific heat capacity of aluminium = 900 J/kg C
now here we will find the total heat to raise the temperature of both




So heat required to raise the temperature of the system is 257500 J
Answer:
The equation v – = v 0 + v 2 v – = v 0 + v 2 is reflects the fact that when acceleration is constant, v – is just the simple average of the initial and final velocities.
Explanation:
hope this is it
I think it’s C b/c it works for me