The time taken to hit the ground is 3.9 s, the range is 18m and the final velocity is 42.82 m/s
<h3>
Motion Under Gravity</h3>
The motion of an object under gravity is the vertical motion of the object under the influence of acceleration due to gravity.
Given that a ball is thrown horizontally from the roof of a building 75 m tall with a speed of 4.6 m/s.
a. how much later does the ball hit the ground?
The time can be calculated by considering the vertical component of the motion with the use of formula below.
h = ut + 1/2gt²
Where
- Initial velocity u = 0 ( vertical velocity )
- Acceleration due to gravity g = 9.8 m/s²
Substitute all the parameters into the formula
75 = 0 + 1/2 × 9.8 × t²
75 = 4.9t²
t² = 75/4.9
t² = 15.30
t = √15.3
t = 3.9 s
b. how far from the building will it land?
The range can be found by using the formula
R = ut
Where u = 4.6 m/s ( horizontal velocity )
R = 4.6 × 3.9
R = 18 m
c. what is the velocity of the ball just before it hits the ground?
The final velocity will be
v = u + gt
v = 4.6 + 9.8 × 3.9
v = 4.6 + 38.22
v = 42.82 m/s
Therefore, the answers are 3.9 s, 18 m and 42.82 m/s
Learn more about Vertical motion here: brainly.com/question/24230984
#SPJ1
Answer:
the pressure at the depth is 1.08 ×
Pa
Explanation:
The pressure at the depth is given by,
P = h
g
Where, P = pressure at the depth
h = depth of the Pacific Ocean in the Mariana Trench = 36,198 ft = 11033.15 meter
= density of water = 1000 
g = acceleration due to gravity ≈ 9.8 
P = 11033.15 × 9.8 × 1000
P = 1.08 ×
Pa
Thus, the pressure at the depth is 1.08 ×
Pa
Answer:
The results have not been through the rigorous process of peer review
Explanation:
When a scientist conducts a study and obtains results, those results ought to be submitted to a reputable journal where the results would go through the rigorous protocol of peer review.
During this process, the reliability of the data presented is ascertained before the results are published for other scientists to see.
If the results are hurriedly published on the internet, many researchers who come in contact with the work may be fed with inaccurate information.
<span>Reducing the distance between them. In theory, also increasing the mass; but you can't really change the mass of an object. However, you can compare the forces if you replace an object by a different object, which has a different mass.
</span>
i hope this will work..