1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
wariber [46]
3 years ago
11

The hydrogen atom, changing from its first excited state to its lowest energy state, emits light with a wavelength of 122 nm. Th

at is in the far ultraviolet. The sodium atom, which like hydrogen has one electron that gets excited outside a core of 10 other electrons, emits light at 589 nm making a similar transition from its first excited state to its lowest state. Which of these statements would be true about the sodium and hydrogen atoms and their spectra?
a. There would be other series of spectral lines ending on the first excited states of both atoms.
b. There would be a series of spectral lines in hydrogen with the longest wavelength one at 122 nm.
c. There would be a series of spectral lines in sodium with the longest wavelength one at 589 nm.
d. The hydrogen atom binds its electron more tightly than the sodium atom does, and would require more energy to remove its electron completely.
Physics
1 answer:
tatyana61 [14]3 years ago
8 0

Answer:

true b and c

Explanation:

n the electromechanical transitions of the atoms the relationship must be fulfilled

        \frac{x}{\lambda } = R (1 / nf - 1 / no²)

where for the final state nf = 1 giving in the case of hydrogen the Lymma series whose smallest wavelength is lam = 122 nm with nf = 1 and there are a series of spectral lines for each value of n of the final state

in the case of sodium so well it has a transition from an excited state to the kiss state (bad)

Now let's review the different proposals

a) False. The electronic potential for sodium is much lower than for hydrognosia

b) True

c) True

d) true

You might be interested in
a ball is thrown horizontally from the roof of a building 45.0 m tall and lands 24.0 m from the base. What was the ball´s initia
Sliva [168]

ball drops 45m under g=10m/s/s

45=1/2x10xt^2 ... application of kinematic equaion from rest

90/10=t^2

t=3

24.0 m in 3 secs => 8m/s no air resistance

4 0
3 years ago
The total yearly world consumption of energy is approximately 4.0 × 1020 J. How much mass would have to be completely converted
BabaBlast [244]

Answer:

m = 4.4 × 10³ kg

Explanation:

Given that:

The total yearly energy is 4.0 × 10²⁰ J

The amount of mass that provides this energy can be determined by using the formula:

E = mc²

where;

c = speed of light in free space = (3 × 10⁸)

4.0 × 10²⁰ = m × (3 × 10⁸)²

m = \dfrac{4.0 \times 10^{20} }{(3\times 10^8)^2}

m = 4.4 × 10³ kg

6 0
3 years ago
Describe the three major layers of the earth including temperature thickness of chemical composition
Elena L [17]
The three main layers are the core, the mantle, and the crust. The core is divided into two parts, the liquid outer core, and the solid inner core. Together it is 3450 km thick. The mantle is 2100 km thick, and the crust is 35-70 km thick. Hope I helped!
3 0
3 years ago
What is meant by the motion of a force​
Vlad [161]

Answer:

Force is classified as a push or a pull

Explanation:

5 0
2 years ago
A rough estimate of the radius of a nucleus is provided by the formula r 5 kA1/3, where k is approximately 1.3 × 10213 cm and A
Sphinxa [80]

Answer:

Density of 127 I = \rm 1.79\times 10^{14}\ g/cm^3.

Also, \rm Density\ of\ ^{127}I=3.63\times 10^{13}\times Density\ of\ the\ solid\ iodine.

Explanation:

Given, the radius of a nucleus is given as

\rm r=kA^{1/3}.

where,

  • \rm k = 1.3\times 10^{-13} cm.
  • A is the mass number of the nucleus.

The density of the nucleus is defined as the mass of the nucleus M per unit volume V.

\rm \rho = \dfrac{M}{V}=\dfrac{M}{\dfrac 43 \pi r^3}=\dfrac{M}{\dfrac 43 \pi (kA^{1/3})^3}=\dfrac{M}{\dfrac 43 \pi k^3A}.

For the nucleus 127 I,

Mass, M = \rm 2.1\times 10^{-22}\ g.

Mass number, A = 127.

Therefore, the density of the 127 I nucleus is given by

\rm \rho = \dfrac{2.1\times 10^{-22}\ g}{\dfrac 43 \times \pi \times (1.3\times 10^{-13})^3\times 127}=1.79\times 10^{14}\ g/cm^3.

On comparing with the density of the solid iodine,

\rm \dfrac{Density\ of\ ^{127}I}{Density\ of\ the\ solid\ iodine}=\dfrac{1.79\times 10^{14}\ g/cm^3}{4.93\ g/cm^3}=3.63\times 10^{13}.\\\\\Rightarrow Density\ of\ ^{127}I=3.63\times 10^{13}\times Density\ of\ the\ solid\ iodine.

7 0
3 years ago
Other questions:
  • A car travels straight for 20 miles on a road that is 30° north of east. What is the east component of the car’s displacement to
    12·2 answers
  • a 2 kilogram wooden block raised on an inclined plane making angle 30 degree frictional force will be equal to​
    7·1 answer
  • You are going to an outdoor concert, and you'll be standing near a speaker that emits 60 W of acoustic power as a spherical wave
    9·1 answer
  • A space station shaped like a giant wheel has a radius of a radius of 153 m and a moment of inertia of 4.16 × 10⁸ kg·m² (when it
    15·1 answer
  • The following steps occur in rods when they are excited by photons of light. What is the proper sequence for these steps? 1. Mem
    6·1 answer
  • El momento lineal de un coche que viaja hacia el norte a 20m/s es distinto al momento lineal del mismo auto viajando hacia el es
    14·1 answer
  • 1. What is the sensor that focuses and image in a camera called?
    5·2 answers
  • You lift a stuffed toy up above the ground (over your head).
    5·1 answer
  • A closely wound search coil has an area of 3.13 cm2, 135 turns, and a resistance of 61.1 Ω. It is connected to a charge-measurin
    9·1 answer
  • Write with all the steps and formulas and drawing if needed.​
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!