By the law of universal gravitation, the gravitational force <em>F</em> between the satellite (mass <em>m</em>) and planet (mass <em>M</em>) is
<em>F</em> = <em>G</em> <em>M</em> <em>m</em> / <em>R </em>²
where
<em>• G</em> = 6.67 × 10⁻¹¹ m³/(kg•s²) is the universal gravitation constant
• <em>R</em> = 2500 km + 5000 km = 7500 km is the distance between the satellite and the center of the planet
Solve for <em>M</em> :
<em>M</em> = <em>F R</em> ² / (<em>G</em> <em>m</em>)
<em>M</em> = ((3 × 10⁴ N) (75 × 10⁵ m)²) / (<em>G</em> (6 × 10³ kg))
<em>M</em> ≈ 2.8 × 10¹⁴ kg
Answer:
it is called arachnophobia
Explanation:
most reason are they way they walk and jump and the people who know they have 4 eyes
Hope This Helped i Like Spiders (^^vv^^) (spider smiley face)
Answer:
Gravitational Potential Energy = mgh
Explanation:
As the miner moves down, the GPE changes because the height changes.
Gravitational Potential Energy = mgh
First we find the energy level with the following formula, where a is the energy level, n1 is the final energy level, n2 is the starting energy level and r is Rydberg's constant in Joules

We insert the values


The wavelength is found with this formula, where h is Planck's constant and c is the speed of light

Finally we insert the values

Which is the same as 93.8 nm
Answer:
Current: 1.0 Amperes
The minimum current is flowing through path D
Explanation:
We first find the equivalent resistance to the three resistors in parallel ( which is the total resistance of the circuit) via the equation:

with this info, we can estimate the current going through branch A using Ohm's Law, and the information that the power source is 6 V:

where the current comes in units of Amperes since all other the quantities are given in the SI system, and we can round this answer to 1.0 Amp following the request to round it to the tenth.
The current will be the lowest through the branch with the largest resistor due to the fact that less current will flow through the path of more resistance.
Than means that the lowest current will be registered through branch D where the 50
resistor is.