In order to solve the total pressure that is exerted by the gases, we need to use the Dalton's Law of Partial pressures. These are the calculations that you need to find out the total amount of pressure exerted to the gases:
3.00atm (N2) + 1.80atm (O2) + 0.29atm (Ar) + 0.18atm (He) + 0.10atm (H),
add up all of that, and the answer would turn out to be: 5.37atm.
I'm not sure but I think it is A. image one has the most spread out particles like a gas, and b has closer together particles like a liquid or solid. since there are no choices that say A=gass and B=solid, so I am guessing it is answer A.
The largest transition metal is copernicium with 112 protons
In rubidium oxide - Rb₂O , the ions are Rb⁺ and O²⁻
Rb is a group one element with one valence electron. To become stable it loses its outer electron to gain a complete outer shell.
Electronic configuration of Rb is - 1s² 2s² 2p⁶ 3s² 3p⁶ 3d¹⁰ 4s² 4p⁶ 5s¹
Once it loses its valence electron the configuration is;
- 1s² 2s² 2p⁶ 3s² 3p⁶ 3d¹⁰ 4s² 4p⁶
The noble gas with this configuration is Krypton - Kr
Oxygen electron configuration is 1s² 2s² 2p⁴
Once it gains 2 electrons the configuration is - 1s² 2s² 3p⁶
The noble gas with this configuration is Neon - Ne
Answer:
See explanation and picture below
Explanation:
First, in the case of methyloxirane (Also known as propilene oxide) the mechanism that is taking place there is something similar to a Sn2 mechanism. Although a Sn2 mechanism is a bimolecular substitution taking place in only step, the mechanism followed here is pretty similar after the first step.
In both cases, the H atom of the HBr goes to the oxygen in the molecule. You'll have a OH⁺ in both. However, in the case of methyloxirane the next step is a Sn2 mechanism step, the bromide ion will go to the less substitued carbon, because the methyl group is exerting a steric hindrance. Not a big one but it has a little effect there, that's why the bromide will rather go to the carbon with more hydrogens. and the final product is formed.
In the case of phenyloxirane, once the OH⁺ is formed, the next step is a Sn1 mechanism. In this case, the bond C - OH⁺ is opened on the side of the phenyl to stabilize the OH. This is because that carbon is more stable than the carbon with no phenyl. (A 3° carbon is more stable than a 2° carbon). Therefore, when this bond opens, the bromide will go there in the next step, and the final product is formed. See picture below for mechanism and products.