Balanced chemical reaction:
MgSO₄(aq) + Sr(NO₃)₂(aq) → Mg(NO₃)₂(aq) + SrSO₄(s).
Ionic reaction:
Mg²⁺(aq) + SO₄²⁻(aq) + Sr²⁺(aq) + 2NO₃⁻(aq) → Mg²⁺(aq) + 2NO₃⁻(aq) + SrSO₄(s).
Net ionic reaction:
Sr²⁺(aq) + SO₄²⁻(aq) → SrSO₄(s).
Magnesium sulfate (MgSO₄), strontium nitrate (Sr(NO₃)₂ and magnesium nitrate (Mg(NO₃)₂) are soluble in water. Strontium sulfate (SrSO₄) is not soluble in water.
This chemical reaction is double displacement reaction - cations and anions of the two reactants switch places and form two new compounds.
1.0 mole ---------- 6.02x10²³ molecules
4.5 moles -------- ?
4.5 * 6,02x10²³ / 1.0
= 2.709x10²⁴ molecules units
Answer is: <span>
The reaction will not be spontaneous at any temperature.
</span>
<span>Gibbs free energy
(G) determines if reaction will proceed spontaneously.
ΔG = ΔH - T·ΔS.
ΔG - changes in Gibbs free energy.
ΔH - changes in enthalpy.
ΔS - changes in entropy.
T is temperature in Kelvins.
When ΔS < 0 (negative entropy change) and ΔH > 0
(endothermic reaction), the process is never spontaneous (ΔG> 0).</span>
Separate Salt and Water Using Distillation
If you want to collect the water, you can use distillation. This works because salt has a much higher boiling point than water. One way to separate salt and water at home is to boil the salt water in a pot with a lid.
hope this helps!!
Answer:

Explanation:
Hello!
In this case, since the chemical reaction between copper and nitric acid is:

By starting with 0.80 g of copper metal (molar mass = 63.54 g/mol) and considering the 1:1 mole ratio between copper and copper (II) nitrate (molar mass = 187.56 g/mol) we can compute that mass via stoichiometry as shown below:

However, the real reaction between copper and nitric acid releases nitrogen oxide, yet it does not modify the calculations since the 1:1 mole ratio is still there:

Best regards!