Answer:
A.) Find the answer in the explanation
B.) Ua = 7.33 m/s , Vb = 7.73 m/s
C.) Impulse = 17.6 Ns
D.) 49%
Explanation:
Let Ua = initial velocity of the rod A
Ub = initial velocity of the rod B
Va = final velocity of the rod A
Vb = final velocity of the rod B
Ma = mass of rod A
Mb = mass of rod B
Given that
Ma = 2kg
Mb = 1kg
Ub = 3 m/s
Va = 0
e = restitution coefficient = 0.65
The general expression for the velocities of the two rods after impact will be achieved by considering the conservation of linear momentum.
Please find the attached files for the solution
Answer:
a. 0.28
Explanation:
Given that
porosity =30%
hydraulic gradient = 0.0014
hydraulic conductivity = 6.9 x 10⁻4 m/s
We know that average linear velocity given as



The velocity in m/d ( 1 m/s =86400 m/d)
v= 0.27 m/d
So the nearest answer is 'a'.
a. 0.28
Uhmmmmm, a kitten...? Lol
Answer:
The average thickness of the blubber is<u> 0.077 m</u>
Explanation:
Here, we want to calculate the average thickness of the Walrus blubber.
We employ a mathematical formula to calculate this;
The rate of heat transfer(H) through the Walrus blubber = dQ/dT = KA(T2-T1)/L
Where dQ is the change in amount of heat transferred
dT is the temperature gradient(change in temperature) i.e T2-T1
dQ/dT = 220 W
K is the conductivity of fatty tissue without blood = 0.20 (J/s · m · °C)
A is the surface area which is 2.23 m^2
T2 = 37.0 °C
T1 = -1.0 °C
L is ?
We can rewrite the equation in terms of L as follows;
L × dQ/dT = KA(T2-T1)
L = KA(T2-T1) ÷ dQ/dT
Imputing the values listed above;
L = (0.2 * 2.23)(37-(-1))/220
L = (0.2 * 2.23 * 38)/220 = 16.948/220 = 0.077 m