Answer:
1.1⁰C
Explanation:
Width W = 5mm = 0.005
Thickness t = 1 mm = 0.001
K = thermal conductivity = 150W/m.K
P = q = heat transfer rate = 4W
We are to find the steady state temperature between the back and the front surface
We have to make these assumptions:
1. There is steady state conduction
2. The heat flow is of one dimension
3. The thermal conductivity is constant
4. The heat dissipation is uniform
We have:
∆t = t*P/k*W²
= (0.001m x 4W)/150x(0.005)²
= 0.004/0.00375
= 1.06667
This is approximately,
1.1⁰C
Thank you!
Answer:
t=2.025 inches
Explanation:
Given that
P = 400 Psi
Yield stress ,σ = 80 ksi
Diameter ,d= 45 ft
We know that
1 ft = 12 inches
d= 540 inches
Factor of safety ,K= 3
The required thickness given as

t=thickness


t=2.025 inches
Therefore thickness will be 2.025 inches.
load every electric circuit,regardless of where it is or how large or small, has four basic parts: an energy source (ac or dc),a conductor (wire), an electrical load (device), and at least one controller(switch)
Answer:
Taking as a basis of calculation 100 mol of gas leaving the conversion reactor, draw andcompletely label a flowchart of this process. Then calculate the moles of fresh methanol feed,formaldehyde product solution, recycled methanol, and absorber off-gas, the kg of steamgenerated in the waste-heat boiler, and the kg of cooling water fed to the heat exchangerbetween the waste-heat boiler and the absorber. Finally, calculate the heat (kJ) that must beremoved in the distillation column overhead condenser, assuming that methanol enters as asaturated vapor at 1 atm and leaves as a saturated liquid at the same pressure.
1
SEE ANSWER
Explanation:
Answer:
There are 6 types of pressure control valves and their function is to regulate the pressure below a threshold level within safe limits and to maintain and control pressure of a particular circuit.
Explanation:
The six type of Pressure valve with their functions are given below:
a. Unloading Valve:
These type of pressure valve are used to pour fluid into the container at very low or no pressure.
b. Safety valve:
These are used when the pressure within the vessel is in excess as inside temperature is near about preset [point point then these valves are open to release the extra pressure and are closed once normal conditions are regained.
c. Pressure Reducing Valve:
These are basically used for the control of the pressure in downstream not exceeding the design limits.
d. Pressure Relief Valves:
These are basically used to limit and regulate the pressure of any system.
e. Counter Balance Valve:
These are used to develop pressure in the reverse direction at the actuator's return line in order to keep the load under control.
f. Sequence Valve:
These are used to maintain sequence or order in the operations of two parts or branches.