1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
suter [353]
3 years ago
9

(3) In the following power system, the transformer is assumed to be ideal. Determine the: a) currents and voltages across each i

mpedance (source impedance, transmission impedance, and load impedance). b) power supplied by the source (average, apparent, and reactive). c) power factor of the source.

Engineering
1 answer:
Anuta_ua [19.1K]3 years ago
6 0

Answer:

Explanation:

Solved solution is in the attached document.

You might be interested in
Briefly explain how each of the following influences the tensile modulus of a semicrystalline polymer and why:(a) molecular weig
marin [14]

Answer:

(a) Increases

(b) Increases

(c) Increases

(d) Increases

(e) Decreases

Explanation:

The tensile modulus of a semi-crystalline polymer depends on the given factors as:

(a) Molecular Weight:

It increases with the increase in the molecular weight of the polymer.

(b) Degree of crystallinity:

Tensile strength of the semi-crystalline polymer increases with the increase in the degree of crystallinity of the polymer.

(c) Deformation by drawing:

The deformation by drawing in the polymer results in the finely oriented chain structure of the polymer with the greater inter chain secondary bonding structure resulting in the increase in the tensile strength of the polymer.

(d) Annealing of an undeformed material:

This also results in an increase in the tensile strength of the material.

(e) Annealing of  a drawn material:

A semi crystalline material which is drawn when annealed results in the decreased tensile strength of the material.

5 0
3 years ago
A reservoir delivers water to a horizontal pipeline 39 long The first 15 m has a diameter of 50 mm, after which it suddenly beco
allsm [11]

Answer:

The difference of head in the level of reservoir is 0.23 m.

Explanation:

For pipe 1

d_1=50 mm,f_1=0.0048

For pipe 2

d_2=75 mm,f_2=0.0058

Q=2.8 l/s

Q=2.8\times 10^{-3]

We know that Q=AV

Q=A_1V_1=A_2V_2

A_1=1.95\times 10^{-3}m^2

A_2=4.38\times 10^{-3} m^2

So V_2=0.63 m/s,V_1=1.43 m/s

head loss (h)

h=\dfrac{f_1L_1V_1^2}{2gd_1}+\dfrac{f_2L_2V_2^2}{2gd_2}+0.5\dfrac{V_1^2}{2g}

Now putting the all values

h=\dfrac{0.0048\times 15\times 1.43^2}{2\times 9.81\times 0.05}+\dfrac{0.0058\times 24\times 0.63^2}{2\times 9.81\times 0.075}+0.5\dfrac{1.43^2}{2\times 9.81}

So h=0.23 m

So the difference of head in the level of reservoir is 0.23 m.

8 0
3 years ago
Problem definition
LekaFEV [45]

Answer:

ummm thats alot

Explanation:

8 0
3 years ago
At 45° latitude, the gravitational acceleration as a function of elevation z above sea level is given by g = a − bz , where a =
Ahat [919]

Answer:

8861.75 m approximately 8862 m

Explanation:

We need to remember Newton's 2nd Law which says that the force experienced by an object is proportional to his acceleration and that the constant of proportionality between those two vectors correspond to the mass of the object.

F=ma for the weight of an object (which is a force) we have that the acceleration experienced by that object is equal to the gravitational acceleration, obtaining that  W = mg

For simplicity we work with g =9.807 \frac{m}{s^{2}} despiting the effect of the height above sea level. In this problem, we've been asked by the height above sea level that makes the weight of an object 0.30% more lighter.

In accord with the formula g = a-bz the "normal" or "standard" weight of an object is given by W = mg = ma when z = 0, so we need to find the value of z that makes W = m(a-bz) = 0.997ma meaning that the original weight decrease by a 0.30%, so now we operate...

m(a-bz) = 0.997ma now we group like terms on the same sides ma(1-0.997) = mbz we cancel equal tems on both sides and obtain that z = \frac{a}{b} (0.003) = \frac{9.807 \frac{m}{s^{2} } }{3.32*10^{-6} s^{-2} } (0.003) = 8861.75 m

7 0
3 years ago
Water flows half-full through a 50-cm-diameter steel channel at an average velocity of 4.3 m/s. Determine the volume flow rate a
Citrus2011 [14]

Um, I do not know what to say ?

3 0
2 years ago
Other questions:
  • It is not a practical proposition to take direct measurements in nanoscale, but we can estimate variations in position and momen
    15·1 answer
  • Note that common skills are listed toward the top, and less common skills are listed toward the bottom.
    14·1 answer
  • Air enters a well-insulated turbine operating at steady, state with negligible velocity at 4 MPa, 300°C. The air expands to an e
    10·1 answer
  • The truck travels in a circular path having a radius of 50 m at a speed of v = 4 m>s. For a short distance from s = 0, its sp
    11·1 answer
  • The parts of a feature control frame are the tolerance value, the datum references, and the
    14·1 answer
  • A(n)_____ is a device that provides the power and motion to manipulate the moving parts of a valve or damper used to control flu
    9·1 answer
  • How do i open a door<br> please i've been trapped in this room for ages
    9·1 answer
  • 13. Which stroke of the four-stroke cycle is shown in the above figure?
    6·1 answer
  • The percentage modulation of AM changes from 50% to 70%. Originally at 50% modulation, carrier power was 70 W. Now, determine th
    15·1 answer
  • What is the importance of the causal link<br> in work accidents?
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!