Answer:
m' = 4948.38 kg/s
Explanation:
For a case of 100% efficiency, the power produced must be equal to the rate of potential energy conversion
GIVEN THAT
Power = 100 MW
rate of Potential energy = (m')*g*h
100*10^6 = (m')*9.81*206
m' = 4948.38 kg/s
Answer:
Yield strength, tensile strength decreases with increasing temperature and modulus of elasticity decreases with increasing in temperature.
Explanation:
The modulus of elasticity of a material is theoretically a function of the shape of curve plotted between the potential energy stored in the material as it is loaded versus the inter atomic distance in the material. The temperature distrots the molecular structure of the metal and hence it has an effect on the modulus of elasticity of a material.
Mathematically we can write,
![E(t)=E_o[1-a\frac{T}{T_m}]](https://tex.z-dn.net/?f=E%28t%29%3DE_o%5B1-a%5Cfrac%7BT%7D%7BT_m%7D%5D)
where,
E(t) is the modulus of elasticity at any temperature 'T'
is the modulus of elasticity at absolute zero.
is the mean melting point of the material
Hence we can see that with increasing temperature modulus of elasticity decreases.
In the case of yield strength and the tensile strength as we know that heating causes softening of a material thus we can physically conclude that in general the strength of the material decreases at elevated temperatures.
Answer:
For any string, we use 
Explanation:
The pumping lemma says that for any string s in the language, with length greater than the pumping length p, we can write s = xyz with |xy| ≤ p, such that xyi z is also in the language for every i ≥ 0. For the given language, we can take p = 2.
Here are the cases:
- Consider any string a i b j c k in the language. If i = 1 or i > 2, we take
and y = a. If i = 1, we must have j = k and adding any number of a’s still preserves the membership in the language. For i > 2, all strings obtained by pumping y as defined above, have two or more a’s and hence are always in the language.
- For i = 2, we can take and y = aa. Since the strings obtained by pumping in this case always have an even number of a’s, they are all in the language.
- Finally, for the case i = 0, we take
, and y = b if j > 0 and y = c otherwise. Since strings of the form b j c k are always in the language, we satisfy the conditions of the pumping lemma in this case as well.
Answer:
26 lbf
Explanation:
The mass of the satellite is the same regardless of where it is.
The weight however, depends on the acceleration of gravity.
The universal gravitation equation:
g = G * M / d^2
Where
G: universal gravitation constant (6.67*10^-11 m^3/(kg*s))
M: mass of the body causing the gravitational field (mass of Earth = 6*10^24 kg)
d: distance to that body
15000 miles = 24140 km
The distance is to the center of Earth.
Earth radius = 6371 km
Then:
d = 24140 + 6371 = 30511 km
g = 6.67*10^-11 * 6*10^24 / 30511000^2 = 0.43 m/s^2
Then we calculate the weight:
w = m * a
w = 270 * 0.43 = 116 N
116 N is 26 lbf
Answer:
Ig =7.2 +j9.599
Explanation: Check the attachment