The answer is -8
====================================================
Explanation:
There are two ways to get this answer
Method 1 will have us plug x = 0 into h(x) to get
h(x) = x^2 - 4
h(0) = 0^2 - 4
h(0) = 0 - 4
h(0) = -4
Then this output is plugged into g(x) to get
g(x) = 2x
g(-4) = 2*(-4)
g(-4) = -8 which is the answer
This works because (g o h)(0) is the same as g(h(0)). Note how h(0) is replaced with -4
So effectively g(h(0)) = -8 which is the same as (g o h)(0) = -8
-----------------------
The second method involves a bit algebra first
Start with the outer function g(x). Then replace every x with h(x). On the right side, we will replace h(x) with x^2-4 because h(x) = x^2-4
g(x) = 2x
g(x) = 2( x )
g(h(x)) = 2( h(x) ) ... replace every x with h(x)
g(h(x)) = 2( x^2-4 ) ... replace h(x) on the right side with x^2-4
g(h(x)) = 2x^2-8
(g o h)(x) = 2x^2-8
Now plug in x = 0
(g o h)(x) = 2x^2-8
(g o h)(0) = 2(0)^2-8
(g o h)(0) = 2(0)-8
(g o h)(0) = 0-8
(g o h)(0) = -8
Regardless of which method you use, the answer is -8
It’s 3n-4
I might be right or wrong
The value of c for which the considered trinomial becomes perfect square trinomial is: 20 or -20
<h3>What are perfect squares trinomials?</h3>
They are those expressions which are found by squaring binomial expressions.
Since the given trinomials are with degree 2, thus, if they are perfect square, the binomial which was used to make them must be linear.
Let the binomial term was ax + b(a linear expression is always writable in this form where a and b are constants and m is a variable), then we will obtain:
Comparing this expression with the expression we're provided with:
we see that:
Thus, the value of c for which the considered trinomial becomes perfect square trinomial is: 20 or -20
Learn more about perfect square trinomials here:
brainly.com/question/88561
It’s 1
...................