The biological compounds that are nonpolar and insoluble in water are lipids. It is a group of molecules that are naturally occurring which includes sterols, waxes, fats, fat-soluble vitamins and the like. These molecules are nonpolar molecules so basically the cannot be dissolved in a polar solvent like water.
This question is hard but I found the answer from merit nation
Answer:
The volume of helium at 25.0 °C is 60.3 cm³.
Explanation:
In order to work with ideal gases we need to consider absolute temperatures (Kelvin). To convert Celsius to Kelvin we use the following expression:
K = °C + 273.15
The initial and final temperatures are:
T₁ = 25.0 + 273.15 = 298.2 K
T₂ = -196.0 + 273.15 = 77.2 K
The volume at 77.2 K is V₂ = 15.6 cm³. To calculate V₁ in isobaric conditions we can use Charle's Law.

Answer:
The 12L helium tank pressurized to 160 atm will fill <em>636 </em>3-liter balloons
Explanation:
It is possible to answer this question using Boyle's law:

Where P₁ is the pressure of the tank (160atm), V₁ is the volume of the tank (12L), P₂ is the pressure of the balloons (1atm, atmospheric pressure) And V₂ is the volume this gas will occupy at 1 atm, thus:
160atm×12L = 1atm×V₂
V₂ = 1920L
As the tank will never be empty, the volume of the gas able to fill balloons is the total volume minus 12L, thus the volume of helium able to fill balloons is:
1920L - 12L = 1908L
1908L will fill:
1908L×
= <em>636 balloons</em>
<em></em>
I hope it helps!
Answer:
%age Yield = 85.36 %
Solution:
The Balance Chemical Reaction is as follow,
C₆H₁₂O + Acid Catalyst → C₆H₁₀ + Acid Catalyst + H₂O
According to Equation ,
100 g (1 mole) C₆H₁₂O produces = 82 g (1 moles) of C₆H₁₀
So,
4.0 g of C₆H₁₂O will produce = X g of C₆H₁₀
Solving for X,
X = (4.0 g × 82 g) ÷ 100 g
X = 3.28 g of C₆H₁₀ (Theoretical Yield)
As we know,
%age Yield = (Actual Yield ÷ Theoretical Yield) × 100
%age Yield = (2.8 g ÷ 3.28 g) × 100
%age Yield = 85.36 %