The biological risk for the first person than the second as a result of radiation weighting is 10 times.
<h3>
What is radiation weighting factor?</h3>
As stated in the question, radiation weighting factor (q) is the ability to transfer energy to the body.
If radiation factor of proton = 2, and radiation factor of alpha particles = 20.
- First person is exposed to alpha radiation = 20
- Second person is exposed to protons = 2
Risk of first person with respect to second person = 20/2 = 10 times higher
Learn more about radiation factor here: brainly.com/question/24039736
#SPJ4
Answer:
The Order is as follow,
C-H < S-H < H-Br < H-Cl
Explanation:
Polarity depends on the electronegativity difference between two atoms, greater the electronegativity difference, greater will be the polarity of bond and vice versa.
Electronegativity Difference between Hydrogen and other given elements are as follow,
1) C-H;
E.N of Carbon = 2.55
E.N of Hydrogen = 2.20
------------
Difference 0.35
2) S-H;
E.N of Sulfur = 2.58
E.N of Hydrogen = 2.20
------------
Difference 0.38
3) H-Br;
E.N of Bromine = 2.96
E.N of Hydrogen = 2.20
-------------
Difference 0.76
4) H-Cl;
E.N of Chlorine = 3.16
E.N of Hydrogen = 2.20
-----------
Difference 0.96
Hence it is proved that the greatest electronegativity difference is found between H and Chlorine in H-Cl, therefore it is highly polar bond and vice versa.
Scandium lost 3 electrons and gave them to oxygen the formula would be Sc2O3
Answer:
Check explanation
Explanation:
From the question, the parameters given are 64.7g of benzene,C6H6; a starting temperature of 41.9°C and bringing it to 33.2°C.
Molar mass of benzene,C6H6= 78.11236 g/mol.
Things to know: heat capacity of benzene, C6H6= 1.63 J/g.K, the heat of fusion = 9.87 kj/mol.
STEP ONE(1): ENERGY USED IN MELTING BENZENE SOLID.
Using the formula below;
Energy used in melting the solid(in JOULES) = (mass of benzene/molar mass of benzene) × heat of Fusion.
=(64.7 g of C6H6/ 78.11236(g per mol) of C6H6) × 9.87 kJ per mol.
= 8.175 J.
= 0.008175 kJ.
STEP TWO (2): ENERGY OF HEATING THE LIQUID.
It can be calculated from the formula below;
Energy= heat capacity (J/g.K) × mass of benzene× (∆T).
= 1.63 J/g.K × 64.7 × (41.9-33.2).
= 917.5J.
= 0.9175 kJ.
Energy required to boil benzene= Energy required to melt the bezene + energy required for boiling.
= 0.008175+ 0.9175.
= 0.93kJ
Approximately, 1 kJ