The size of the object and the distance between the objects.
Answer: Option (B) is the correct answer.
Explanation:
It is known that for writing a chemical reaction equation, reactants are written on left hand side whereas products are written on right hand side.
And in between reactants and products a forward arrow is placed pointing towards the products.
Therefore, the reaction for carbon burns in the presence of oxygen to give carbon dioxide will be written as follows.

Here, carbon and oxygen atoms are the reactants whereas carbon dioxide is the product.
means 0.5 raise to the power of n. "To the power of" means an action of multiplication of 0.5 to n times.
The different values of n are given in the table. Substituting these values:
For A:
n = 1 (given)

For B:
n = 2 (given)

For C:
n = 3 (given)

For D:
n = 6 (given)

For E:
n = 8 (given)

Hence, the values are:
A = 0.5
B = 0.25
C = 0.125
D = 0.015625
E = 0.00390625
Answer:
<u><em></em></u>
- <u><em>pOH = 0.36</em></u>
Explanation:
Both <em>potassium hydroxide</em> and <em>lithium hydroxide </em>solutions are strong bases, so you assume 100% dissociation.
<u>1. Potassium hydroxide solution, KOH</u>
- Volume, V = 304 mL = 0.304 liter
- number of moles, n = M × V = 0.36M × 0.304 liter = 0.10944 mol
- 1 mole of KOH produces 1 mol of OH⁻ ion, thus the number of moles of OH⁻ is 0.10944
<u>2. LIthium hydroxide, LiOH</u>
- Volume, V = 341 mL = 0.341 liter
- number of moles, n = M × V = 0.341 liter × 0.51 M = 0.17391 mol
- 1mole of LiOH produces 1 mol of OH⁻ ion, thus the number of moles of OH⁻ is 0.17391
<u />
<u>3. Resulting solution</u>
- Number of moles of OH⁻ ions = 0.10944 mol + 0.17391 mol = 0.28335 mol
- Volume of solution = 0.304 liter + 0.341 liter = 0.645 liter
- Molar concentration = 0.28335 mol / 0.645 liter = 0.4393 M
<u />
<u>4. </u><em><u>pOH</u></em>
← answer
yes because you have 2 H 2Na 2O on both sides