Although you have not provided the circled electron, I can help you with a wide explanation.
1) Atomic number of manganese is 25. That means that it has 25 protons and 25 electrons.
2) Those 25 electrons are distributed (electron configuration) as per the quantum rules:
1s² 2s² 2p⁶ 3s² 3p⁶ 4s² 3d⁵
3) The most reasonable is that you have been asked to give the possible quantum numbers for an electron in the 4s or 3d.
4) Those are 7 electrons and these are their possible sets of quantum numbers:
i) For the two electrons in 4s:
n is the main energy level so n = 4
l tells the kind of orbital, which is s, so l = 0
ml is also 0 (it can be from -l to + l, so given that l i s0, ml is 0)
ms: one is +/12 and the other is -1/2 (this is the spin number).
ii) For the 5 electrons in 3d
n = 3
l can be 0, 1, or 2
if l = 0, then ml = 0
if l = 1, then ml can be -1, 0 , or 1 (from - l to + l)
ms can be either +1/2 or - 1/2 (spin)
Answer:
(edit: nvm I figured it out, here is the answer)
Explanation:
Answer:
D. +5.7 kJ/mol
Explanation:
Molar free energy (ΔG) in the transportation of uncharged molecules as glucse through a cell membrane from the exterior to the interior of the cell is defined as:
ΔG = RT ln C in / C out
knowing R is 8,314472 kJ/molK; T is 298K Cin = 200mM and Cout = 20mM
ΔG = 5,7 kJ/mol
Right answer is:
D. +5.7 kJ/mol
I hope it helps!
The reaction between the magnesium, Mg, and the hydrochloric acid, HCl is given in the equation below,
Mg + 2HCl --> H2 + MgCl2
The number of moles of HCl that is needed for the reaction is calculated below.
n = (0.4681 g Mg)(1 mol Mg/24.305 g Mg)(2 mol HCl/1 mol Mg)
n = 0.0385 mols HCl
From the given concentration, we calculate for the required volume.
V = 0.0385 mols HCl/(0.650 mols/L)
V = 0.05926 L or 59.26 mL
<em>Answer: 59.26 mL of HCl</em>