Solving a system of linear equations, we conclude that the measure of side Z is 2√13
<h3>How to find the measure of side Z?</h3>
Remember the Pythagorean theorem. It says that the square of the hypotenuse is equal to the sum of the squares of the legs.
In the image, we can identify 3 right triangles, and with the Pythagorean theorem, we can write a system of 3 equations.
x^2 = y^2 + 4^2
z^2 = y^2 + 9^2
(4 + 9)^2 = z^2 + x^2
We want to solve that for z.
Now, the second equation can be rewritten to:
y^2 = z^2 - 9^2
Now let's replace the first equation into the third one, so we get:
(4 + 9)^2 = z^2 + (y^2 + 4^2)
Now we can replace y^2 by z^2 - 9^2
(4 + 9)^2 = z^2 + ((z^2 - 9^2) + 4^2)
Now we can solve this:
(13)^2 = z^2 + z^2 - 9^2 + 4^2
(13)^2 + 9^2 - 4^2 = 2*z^2
104/2 = z^2
52 = z^2
√52 = z
√(4*13) = z
√4*√13 = z
2√13 = z
We conclude that the measure of side Z is 2√13
If you want to learn more about systems of equations:
brainly.com/question/13729904
#SPJ1
For this fraction, you would have to see how many times 7 goes into 47. So, 6 times as 7 times 6 is 42. Subtract 42 from 47, and this would be your remainder:
6
<h2>
Answer:</h2>
For a real number a, a + 0 = a. TRUE
For a real number a, a + (-a) = 1. FALSE
For a real numbers a and b, | a - b | = | b - a |. TRUE
For real numbers a, b, and c, a + (b ∙ c) = (a + b)(a + c). FALSE
For rational numbers a and b when b ≠ 0, is always a rational number. TRUE
<h2>Explanation:</h2>
- <u>For a real number a, a + 0 = a. </u><u>TRUE</u>
This comes from the identity property for addition that tells us that<em> zero added to any number is the number itself. </em>So the number in this case is
, so it is true that:

- For a real number a, a + (-a) = 1. FALSE
This is false, because:

For any number
there exists a number
such that 
- For a real numbers a and b, | a - b | = | b - a |. TRUE
This is a property of absolute value. The absolute value means remove the negative for the number, so it is true that:

- For real numbers a, b, and c, a + (b ∙ c) = (a + b)(a + c). FALSE
This is false. By using distributive property we get that:

- For rational numbers a and b when b ≠ 0, is always a rational number. TRUE
A rational number is a number made by two integers and written in the form:
Given that
are rational, then the result of dividing them is also a rational number.
Answer:
n= -2 and m=3
Step-by-step explanation:
3 x 3= 9
11- 9 = 2