6x^2 - 2x + 1 is a quadratic formula from the form ax^2 + bx + c. This form of equation represents a parabola.
Finding 6x^2 - 2x + 1 = 0, means that you need to find the zeroes of the equation.
Δ = b^2 - 4ac
If Δ>0, the equation admits 2 zeroes and 6x^2 - 2x + 1 = 0 exists for 2 values of x.
If Δ<0, the equation doesn't admit any zero, and 6x^2 - 2x + 1 = 0 doesn't exist since the parabola doesn't intersect with the axe X'X
If Δ=0, the equation admits 1 zero, which means that the peak of the parabola is touching the axe X'X.
In 6x^2 - 2x + 1, a=6, b=-2, and c =1.
Δ= b^2 - 4ac
Δ=(-2)^2 - 4(6)(1)
Δ= 4 - 24
Δ= -20
Δ<0 so the parabola doesn't intersect with the Axe X'X, which means there's no solution for 6x^2 - 2x + 1 = 0.
I've added a picture of the parabola represented by this equation under the answer.
Hope this Helps! :)
You’re solving for y so it would be B
Answer:6 people
Step-by-step explanation: divide 4 by 2/3
Answer:

g(t) = 0
And
The differential equation
is linear and homogeneous
Step-by-step explanation:
Given that,
The differential equation is -

![e^{t}y' + (9t - \frac{1}{t^{2} + 81 } )y = 0\\e^{t}y' + (\frac{9t(t^{2} + 81 ) - 1}{t^{2} + 81 } )y = 0\\e^{t}y' + (\frac{9t^{3} + 729t - 1}{t^{2} + 81 } )y = 0\\y' + [\frac{9t^{3} + 729t - 1}{e^{t}(t^{2} + 81) } ]y = 0](https://tex.z-dn.net/?f=e%5E%7Bt%7Dy%27%20%2B%20%289t%20-%20%5Cfrac%7B1%7D%7Bt%5E%7B2%7D%20%2B%2081%20%7D%20%29y%20%3D%200%5C%5Ce%5E%7Bt%7Dy%27%20%2B%20%28%5Cfrac%7B9t%28t%5E%7B2%7D%20%2B%2081%20%29%20-%201%7D%7Bt%5E%7B2%7D%20%2B%2081%20%7D%20%29y%20%3D%200%5C%5Ce%5E%7Bt%7Dy%27%20%2B%20%28%5Cfrac%7B9t%5E%7B3%7D%20%2B%20729t%20%20-%201%7D%7Bt%5E%7B2%7D%20%2B%2081%20%7D%20%29y%20%3D%200%5C%5Cy%27%20%2B%20%5B%5Cfrac%7B9t%5E%7B3%7D%20%2B%20729t%20%20-%201%7D%7Be%5E%7Bt%7D%28t%5E%7B2%7D%20%2B%2081%29%20%7D%20%5Dy%20%3D%200)
By comparing with y′+p(t)y=g(t), we get

g(t) = 0
And
The differential equation
is linear and homogeneous.
Answer:
Circle
Step-by-step explanation:
This object is what we call "circle". All the points in the circle are at the same distance from a given point which is the center of the circle. Moreover, the distance between the center and every point on the circle is called "radius". Higher values for the radius imply points at a higher distance from the center.
Additionally, we can calculate the perimeter of the circle, or the circumference, with the following formula:
circumference = 2*(radius) pi
Where pi is an irrational number usually used as 3.14.
If you have doubts, try to draw a circle and measure the distance between the center and any point on the circle.