15
Step-by-step explanation:
Answer:
- number of multiplies is n!
- n=10, 3.6 ms
- n=15, 21.8 min
- n=20, 77.09 yr
- n=25, 4.9×10^8 yr
Step-by-step explanation:
Expansion of a 2×2 determinant requires 2 multiplications. Expansion of an n×n determinant multiplies each of the n elements of a row or column by its (n-1)×(n-1) cofactor determinant. Then the number of multiplies is ...
mpy[n] = n·mp[n-1]
mpy[2] = 2
So, ...
mpy[n] = n! . . . n ≥ 2
__
If each multiplication takes 1 nanosecond, then a 10×10 matrix requires ...
10! × 10^-9 s ≈ 0.0036288 s ≈ 0.004 s . . . for 10×10
Then the larger matrices take ...
n=15, 15! × 10^-9 ≈ 1307.67 s ≈ 21.8 min
n=20, 20! × 10^-9 ≈ 2.4329×10^9 s ≈ 77.09 years
n=25, 25! × 10^-9 ≈ 1.55112×10^16 s ≈ 4.915×10^8 years
_____
For the shorter time periods (less than 100 years), we use 365.25 days per year.
For the longer time periods (more than 400 years), we use 365.2425 days per year.
Answer:

And the best option would be:

Step-by-step explanation:
We assume that the distribution for the random variable is:

For this case we want to calculate the following probability:

And we can use the normal standard distribution or excel and we got:

And the best option would be:

16 ounces= 1 pound
48÷16=3
3 pounds
The triangle pay $32 more for that day than it paid per day during the first period of time.
Step-by-step explanation:
The given is,
Triangle Construction pays Square Insurance $5,980
To insure a construction site for 92 days
To extend the insurance beyond the 92 days costs $97 per day
Triangle extends the insurance by 1 day
Step:1
Insurance per day from the 92 days period,

Where, Total insurance for 92 days = $ 5,980
Period = 92 days
From the values, equation becomes,

= $ 65 per day
Step:2
Insurance per day after the 92 days,
= $ 97
Amount Pay for that day than it paid per day during the first period of time,

= $32
Result:
The triangle pay $32 more for that day than it paid per day during the first period of time, if the Triangle Construction pays Square Insurance $5,980
to insure a construction site for 92 days and to extend the insurance beyond the 92 days costs $97 per day.