Answer:
The answer to your question is d. 0.5 M
Explanation:
Data
[A] = 1M
K = 0.5
Concentration of B and C at equilibrium = x
Concentration of A at equilibrium = 1 - x
Equation of equilibrium
k = ![\frac{[B][C]}{A}](https://tex.z-dn.net/?f=%5Cfrac%7B%5BB%5D%5BC%5D%7D%7BA%7D)
Substitution
![0.5 = \frac{[x][x]}{1 - x}](https://tex.z-dn.net/?f=0.5%20%3D%20%5Cfrac%7B%5Bx%5D%5Bx%5D%7D%7B1%20-%20x%7D)
Simplification
0.5 = 
Solve for x
0.5(1 - x) = x²
0.5 - 0.5x = x²
x² + 0.5x - 0.5 = 0
Find the roots x₁ = 0.5 x₂ = -1
There are no negative concentrations so the concentration of A at equilibrium is
[A] = 1 - 0.5
= 0.5 M
<span>The chemical properties of elements is determined by the electron shell configurations of each element. Different electron shell configuration = different chemical properties. And the number of electrons that an element has is determined by the number of protons the element has in it's nucleus. Iron has 26 protons, so a neutral atom of iron will have 26 electrons, while nickle has 28 protons, therefore when neutral will have 28 electrons. And since they have differing numbers of electrons, their electron shells differ and therefore their chemical properties differ.</span>
Answer:
2.881x10^23 atoms
Explanation:
From the studies of Avogadro's hypothesis, we discovered that 1mole of any substance contains 6.02x10^23 atoms.
Therefore 1mole of Fe contains 6.02x10^23 atoms.
Molar Mass of Fe = 56g/mol
56g of Fe contains 6.02x10^23 atoms.
Therefore, 26.8g of Fe will contain = (26.8x6.02x10^23) / 56 = 2.881x10^23 atoms
Iron (II) oxide FeO Fe : O = 1 : 1
Iron (III) oxide Fe₂O₃ Fe : O = 2 : 3