Answer:
Last week, it was announced that four new elements would be added to the periodic table, a collaboration from researchers in Russia, Japan and the U.S. Elements 113, 115, 117, and 118, which will complete the seventh row, are superheavy elements, that have an atomic number greater than 104.
Explanation:
277.79 atm is the calculated gas pressure.
The ideal gas is a fictitious concept used to study how real gases behave by comparing them to their deviations. The pressure-temperature rules are followed by an ideal gas.
177 atm is the initial pressure. The starting temperature is 298 K (25 °C = 25 + 273 °C).
195°C = 195+273
= 468K is the final temperature.
The pressure temperature relation illustrated below can be used to get the final pressure.
P1/T1 = P2/T1
= P1T2/T1
= 177 atm 468 K /298 K
= 277.97 atm
The final pressure is therefore 277.97 atm.
Learn more about Pressure here-
brainly.com/question/4578923
#SPJ4
Answer: Option (b) is the correct answer.
Explanation:
A change that does not lead to any difference in chemical composition of a substance is known as a physical change.
For example, shape, size, mass, volume, density, boiling point, etc of a substance are all physical properties.
As ice melts to form water shows that only the state of matter is changing. Hence, it is a physical change. Similarly, sugar cubes dissolve in hot coffee is also a physical change as no new compound has formed.
On the other hand, changes that lead to bring change in chemical composition of a substance is known as a chemical change.
For example, exploding dynamite, rotting cheese etc are all chemical changes.
Thus, we can conclude that both are physical changes because there is a change in the physical states of ice and sugar.
The table with the data is in the picture attached.
Answer:
Explanation:
The reaction equation suggests that the law could have this form:
Then, the work is to find the values of the exponents that satisfy the initial rate data.
A first glance shows that for the third and fourth trials the initial rates are the same. Since for these two trials only the initial concentration of substance B changed (A and C were kept equal), you conclude that the reaction rate does not depend on B, and ist exponent (lower b) is 0.
Then, so far you can say:
When you use trials 1 and 2, you get:

Now, you can use trials 1 and 3 to determine the other exponent:

Thus, you have the rate law:
Now, you just use any trial to obtain k. Using trail 1:
Which yields:
<span>The
flowers undergo photosynthesis so it is expected to release O2. When you zip
the flower in a plastic bag and placed it in the refrigerator, the plastic bag
will shrink in size. The extra air plus the O2 in the back forms gaseous water.
This gaseous water will slowly liquefy and when placed in the fridge, it will
condense to form water solids.</span>