The moles of oxygen that are needed to produce 13.7 moles of carbon dioxide is 21.17 moles of Oxygen
<u><em>calculation</em></u>
2 C₆H₁₂O + 17 O₂ → 12 CO₂ +12 H₂O
The moles of O₂ is determined using the mole ratio
that is for given equation above O₂ : Co₂ is 17 :12
therefore the moles of O ₂= 13.7 moles x 17/12 =21.17 moles
Answer:
It's a, trust me I'm very good with chemistry
Explanation:
I think the notation used to represent beta is B
35
Because there’s 7 carbon atoms in every molecule of artificial sweetener
And if you have 5 molecules of that
7x5 =35
Complete question:
ΔU for a van der Waals gas increases by 475 J in an expansion process, and the magnitude of w is 93.0 J. calculate the magnitude of q for the process.
Answer:
The magnitude of q for the process 568 J.
Explanation:
Given;
change in internal energy of the gas, ΔU = 475 J
work done by the gas, w = 93 J
heat added to the system, = q
During gas expansion process, heat is added to the gas.
Apply the first law of thermodynamic to determine the magnitude of heat added to the gas.
ΔU = q - w
q = ΔU + w
q = 475 J + 93 J
q = 568 J
Therefore, the magnitude of q for the process 568 J.