Answer:
See explanation
Explanation:
When either pan is heated, energy is transferred via conduction. Conduction is the process by which heat is transferred through a material, the average position of the particles remaining the same.
When the pans are heated, the particles in each pan vibrate faster and transfer this energy rapidly to neighboring particles.
The pan with a thicker base has more particles in it than the pan with lighter weight base. Note that, The rate of heat transfer is inversely proportional to the thickness of the material in question. Hence, the thicker the base, the more the number of particles present and the longer the time it takes for the food to cook.
Answer:
3 × 10^8 m/s
Explanation:
The wavelength, can be calculated by using the following formula;
λ = v/f
Where;
λ = wavelength (m)
v = velocity/speed of light (m/s)
f = frequency (Hz)
According to the provided information in this question, λ = 600nm i.e. 600 × 10^-9m, f = 5.00 x 10^14 Hz
Hence, using λ = v/f
v = λ × f
v = 600 × 10^-9 × 5.00 x 10^14
v = 6 × 10^-7 × 5.00 x 10^14
v = 30 × 10^(-7 + 14)
v = 30 × 10^ (7)
v = 3 × 10^8 m/s
1s2 2s2 2p1
fifth electron is in 2p orbital
so answer is 2 2 -1 -1/2 , or 2 2 -1 1/2
*1/2 and -1/2 are spins, so they are interchangeable when writing the first electron in the ml
A because that honestly just makes the most sense
Gold has a very high density of about 19.32g/cm^3 while Aluminum has a low density of 2.7 gm/cm^3 which means gold can pack more amount of matter in a comparatively small space as compared to Aluminum.