Answer:
See explanation
Explanation:
According to Bronsted-Lowry, an acid is a proton donor while a base is a proton acceptor.
Hence, if we consider the reaction above, we will notice that for each base there is a conjugate acid and for each acid there is a conjugate base.
For the acid HNO3, its conjugate base is NO3^- while for the acid H3O^+, its conjugate base is H2O.
Answer:
2Ba₃(PO₄)₂ +6SiO₂ ⇒ P₄O₁₀ +6BaSiO₃
Explanation:
Equating coefficients, you get ...
aBa₃(PO₄)₂ +bSiO₂ ⇒ cP₄O₁₀ +dBaSiO₃
For Ba: 3a = d
For P: 2a = 4c
For O: 8a +2b = 10c +3d
For Si: b = d
__
Expressing everything in terms of b and c, we get ...
d = b
a = b/3 = 2c
From the second, b = 6c, so we have ...
a = 2c
b = 6c
c = c
d = 6c
And we can write the equation with c=1 as ...
2Ba₃(PO₄)₂ +6SiO₂ ⇒ P₄O₁₀ +6BaSiO₃
Answer:
p3=0.36atm (partial pressure of NOCl)
Explanation:
2 NO(g) + Cl2(g) ⇌ 2 NOCl(g) Kp = 51
lets assume the partial pressure of NO,Cl2 , and NOCl at eequilibrium are P1 , P2,and P3 respectively
![Kp=\frac{[NOCl]^{2} }{[NO]^{2} [Cl_2] }](https://tex.z-dn.net/?f=Kp%3D%5Cfrac%7B%5BNOCl%5D%5E%7B2%7D%20%7D%7B%5BNO%5D%5E%7B2%7D%20%5BCl_2%5D%20%7D)
![Kp=\frac{[p3]^{2} }{[p1]^{2} [p2] }](https://tex.z-dn.net/?f=Kp%3D%5Cfrac%7B%5Bp3%5D%5E%7B2%7D%20%7D%7B%5Bp1%5D%5E%7B2%7D%20%5Bp2%5D%20%7D)
p1=0.125atm;
p2=0.165atm;
p3=?
Kp=51;
On solving;
p3=0.36atm (partial pressure of NOCl)
For the first one, you have to find one that has both a metal and a nonmetal in it, plus potassium. Bonds between nonmetals are called covalent because they share electrons and a bond between a metal and a nonmetal is an ionic bond because they exchange electrons.
Potassium chloride is KCl. Only an ionic bond.
Potassium hydride is KH. Only an ionic bond.
Potassium nitrate is KNO3. There we go, that has a covalent bond between the nitrogen and oxygen, and an ionic bond between potassium and the nitrogen and oxygen.
For the second one, potassium chloride is the answer because the other three also have covalent bonds. Chloride is the only one that isn't a compound.